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Synchronization,  which  occurs  for  both  chaotic  and  nonchaotic  sys-
tems,  is  a  striking  phenomenon  with  many  practical  implications  for
natural  phenomena  and  technological  applications.  However,  even
before synchronization, strong correlations and complex patterns occur
in  the  collective  dynamics  of  natural  systems.  To  characterize  their
nature  is  essential  for  understanding  many  phenomena  in  physical  and
social  sciences  as  well  as  the  perspectives  to  control  their  behavior.
Because  simple  correlation  measures  are  unable  to  characterize  these
collective  patterns,  we  have  developed  more  general  methods  for  their
detection and parametrization. The emergence of patterns of strong cor-
relations before synchronization is illustrated in a few models. They are
shown  to  be  associated  with  the  behavior  of  ergodic  parameters.  The
models are then used as a testing ground of the new pattern characteri-
zation tools. 
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Introduction1.

When  natural  systems  are  made  to  interact  with  one  another,
collective  properties  emerge  that  would  be  hard  to  predict  from  their
individual properties. Synchronization [1–8] is a most striking cooper-
ative phenomenon in nature that has been shown to be of fundamen-
tal importance in fields  as diverse as the operation of heart pacemaker
cells  [9,  10],  circadian  cycles  [11],  epileptic  seizures  [12,  13],
schizophrenia  disorders  [14,  15],  neuronal  firing  [16–18],  animal
behavior  [19],  social  fads,  the  integration  of  cognitive  tasks
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[20–22],  synchronization-based  computation  [23]  and  even  quantum
systems�[24].  

Many  natural  systems  can  be  described  as  networks  of  oscillators
coupled  to  each  other.  Coupled  oscillators  may  display  synchronized
behavior, that is, follow a common dynamical evolution. Synchroniza-
tion properties are dependent on the coupling pattern among the oscil-
lators,  represented  as  an  interaction  network  [25–33].  The  central
question  here  concerns  the  emergence  of  coherent  behavior:  synchro-
nization  or  other  types  of  correlation.  This  occurs  for  systems  with
regular  behavior  as  well  as  for  systems  that  have  chaotic  dynamics
(lasers,  neural  networks,  physiological  processes,  etc.).  Chaotic  sys-
tems are characterized by a strong sensitivity to initial conditions, and
two  identical  uncoupled  chaotic  systems  will  become  uncorrelated
after  a  long  time  even  if  they  start  from  very  similar  (but  not  identi-
cal) states. Nevertheless, the coupling of such systems can make them
follow  the  same  chaotic  trajectories  [34–39].  The  degree  of  synchro-
nization  is  usually  measured  by  a  parameter  related  to  the  coherence
of the phases or by the entropy of the phase distribution [40]. Most of
the  work  developed  so  far  in  this  field  has  emphasized  criteria  for
synchronizability  and  the  relation  between  network  structure  and  the
emergence  of  synchronized  behavior.  Typically,  the  emphasis  has
been  on  the  distinction  between  synchronized  and  incoherent
behavior  or  on  their  coexistence,  as  in  the  so-called  chimera  states
[41–46].  Some  exploration,  mostly  numerical,  has  also  been  done  on
partially synchronized states, clustering, dimensional reduction and so
on [47–54]. 

Striking  as  it  is,  synchronization  is  not  the  whole  story  because,
without or before synchronization, much subtler correlations occur in
the  global  dynamical  behavior  of  interacting  systems.  However,
whereas synchronization or partial (cluster) synchronization is easy to
detect, it is not so clear how to detect and quantify other types of cor-
relations.  Little  has  been  done  on  the  way  of  developing  effective
tools  to  characterize,  in  a  quantitative  manner,  the  striking  correla-
tion  phenomena  that  may  appear  before  synchronization  or  even  in
the  apparently  incoherent  phases  of  some  systems.  That  is  the  main
purpose of this paper. 

As  a  first  step  and  to  illustrate  the  fact  that,  even  at  very  small
interaction  strength,  a  system  of  N  previously  independent  systems
becomes  enslaved  to  a  collective,  essentially  one-dimensional
dynamic,  a  deformed  Kuramoto  model  is  studied  in  Section  2.  In
some limit of this model, a rigorous calculation of the Lyapunov spec-
trum is possible, and we are able to reveal the nature of the strong cor-
relations that are present even very far away from the synchronization
threshold. In addition, the model provides a good hint about the rele-
vance  of  the  ergodic  parameters  to  the  collective  behavior.  Having
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also  found  in  this  section  that  a  simple  correlation  measure  is  unable
to  properly  characterize  the  dynamics,  we  proceed  to  develop  in
Section  3  some  new  tools  for  this  purpose.  One  is  based  on  the
geometrical  characterization  of  the  dynamics,  another  is  related  to
dynamical  clustering  using  spectral  methods  and  another  is  based  on
a  version  of  the  notion  of  conditional  Lyapunov  exponents.  Admit-
tedly,  the  new  tools  are  more  complex  than  simple  correlations.
Nevertheless, they are not hard to program and even implement as an
automatic diagnostic. 

Then,  in  Section  4,  application  of  the  tools  is  illustrated  in  the
deformed  Kuramoto  model,  on  a  model  of  coupled  oscillators  with  a
triangle  interaction  and  on  an  integrate-and-fire  model.  The  first  two
models  have  essentially  the  same  dynamical  complexity  as  the
Kuramoto  model,  widely  used  as  a  paradigm  for  synchronizing  sys-
tems,  and  are  representative  of  the  stylized  behavior  found  in  many
collective  systems  in  biology,  population  dynamics,  socioeconomic
phenomena,  and  others.  The  third  model  relates  to  neuroscience.  For
clarity, most of the numerical illustrations of the results are presented
for a small (~100) number of interacting agents; however, in all cases,
to  exclude  finite  size  effects,  simulations  with  much  larger  numbers
were performed with qualitatively similar results. 

The Deformed Kuramoto Model: An Illustration of the Emergence 

of Strong Correlations before Synchronization   

2.

The main model used in the past for the study of synchronization phe-
nomena was the Kuramoto model [55],

dθi

dt
 ωi +

K

N - 1

j1

N

sinθj - θi. (1)

The  analysis  of  the  Kuramoto  model  has  a  long  history,  with  a  num-
ber of important results obtained throughout the years [56, 57], but a
full  understanding  of  its  dynamics  is  still  lacking,  and  most  of  the
rigorous results are only strictly valid in the thermodynamic limit.  

Here we use a model of the same type. This model, first  mentioned
in [58], is 

xit + 1  xi(t) +ωi +
K

N - 1

j1

N

πf(n)xj - xi mod π, (2)

with  xi ∈ [-π, π)  and  f(n)  a  deformed  version  of  the  Kuramoto

interaction  

f(n)(x)  sign(x) sin
xn

πn-1

1/n

. (3)
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For n  1, f(1)  sin(x) and when n → ∞, it becomes (Figure 1)  

f(∞)xj - xi 
1

π
xj - xi mod 1. (4)

For the numerical examples, the ωi will follow a Cauchy distribution  

p(ω) 
γ

πγ2 + (ω -ω0)
2
. (5)

The  f(∞)
 interaction  will  be  used  to  derive  parameters  that  character-

ize  the  correlations  that  emerge  before  synchronization.  However,
they can also be easily computed in more general systems.  

Figure 1. The f (n) interaction function.  

For  coupled  dynamical  systems,  an  order  parameter  for  synchro-
nization is, for example [4],

Rn(t)  
m1

N

An,me
ixm(t) , (6)

where A is the adjacency matrix. For the fully coupled system we con-
sider, it is simply  

r(t) 
1

N

j1

N

eixj(t) . (7)

In Figures 2, 3 and 4 we display the results of numerical simulation

of  the  system  in  equation  (2)  with  f(∞),  N  100,  K  0.2,  K  0.4
and K  0.8. A typical distribution of the Cauchy-distributed frequen-
cies ωi  is plotted in Figure 5. We start from random initial conditions

and plot the color-coded coordinates xi(t) from t  500 to t  600. It

can  be  seen  that  for  the  small  K,  the  coordinates  seem  to  be  mostly
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uncorrelated,  whereas  for  larger  K,  a  large  degree  of  synchronization
is  observed.  This  is  also  the  information  that  is  obtained  from  the
behavior of the order parameter r(t). 

Figure 2. Coordinates xi and order parameter r(t) for K  0.2.  

Figure 3. Coordinates xi and order parameter r(t) for K  0.4.  

The behavior of the model is similar to Kuramoto’s. An important
question  is  whether  synchronization  is  all  there  is  in  the  dynamics  of
interacting  oscillators.  In  the  past,  several  authors  have  found,  for
example,  synchronized  cluster  formation  before  the  full  synchroniza-
tion transition. The simplicity of the present model allows for further
exploration  of  this  question  and  a  useful  hint  is,  as  usual,  obtained
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from  the  computation  of  the  ergodic  parameters  [59].  In  particular,
the Lyapunov spectrum of the model (equation (2)) in the n → ∞ case
may be obtained exactly. 

Figure 4. Coordinates xi and order parameter r(t) for K  0.8.  

Figure 5. A typical distribution of the Cauchy-distributed frequencies ωi.  

When  K  0,  there  are  N  neutral  directions;  that  is,  the  effective
dynamical  dimension  is  N  and  the  Lyapunov  spectrum  contains  N
zeros. However, as soon as K > 0, the Lyapunov spectrum consists of

one  isolated  zero  and  log1 -NK  N - 1,  (N - 1)  times.  Therefore,

although it is only for sufficiently  large K that synchronization effects
seem to occur, there are, for any small K > 0, N - 1 contracting direc-
tions.  The  effective  dynamical  dimension  is  one  for  any  small  K > 0.
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As soon as there is a (positive) interaction between the units, they are,
in  the  ergodic  sense,  enslaved  to  a  single  collective  dynamic.  Notice
that this is not a pathology of this model. Numerical simulation of the
Kuramoto  and  other  models  also  shows  a  drastic  reduction  of  the
effective dimension long before the synchronization transition. 

The  fact  that  the  Lyapunov  spectrum  of  the  deformed  Kuramoto
model in the n → ∞ limit may be obtained exactly provides important
information  about  the  mechanisms  that  occur  before  and  at  synchro-
nization. The eigenvectors of the Jacobian are

1

1

1

⋮

⋮

1

;

1

-1

0

⋮

⋮

0

;

1

1

-2

0

⋮

0

; ⋯ ;

1

1

1

1

⋮

-N + 1

,

the first  one being associated with the eigenvalue 1 and all the others

with  1 -NK  N - 1.  Denoting  by  xi  the  agents’  coordinates,  the

eigenmodes associated with these eigenvectors are  

YN, p  
in

n+p-1

xi - pxn+p.

For  K ≠ 0  and  before  synchronization,  these  modes  follow  complex
periodic  orbits  that  converge  to  fixed  points  when  synchronization
sets in. Therefore, two distinct phenomena are found here. The first  is
the  dimension  reduction  at  K  0  and  then  the  convergence  to  fixed
points  of  the  eigenmotions  associated  with  the  negative  Lyapunov
exponents.  Here  the  dimension  reduction  threshold  is  quite  sharp  at
K  0, but in other models it is more gradual.  

The  synchronization  order  parameter  (equation  (7))  cannot  by
itself  describe  the  strong  correlations  and  dimensional  reduction  that
occur  before  synchronization.  As  shown  for  the  simple  model
(equation  (2))  in  the  n → ∞  limit,  characterization  of  the  correlations
may  be  obtained  by  the  projections  on  the  eigenvectors  of  the  Lya-
punov  matrix.  However,  our  aim  is  to  develop  general  methods  that
might be applied to any system when there is no access to its solutions
or even to the equations that generate the time series. 

Characterizing Correlations: The Tools   3.

Will a correlation measure be sufficient  to unravel all the complexities
that arise before synchronization? To explore this possibility, we have
computed  the  correlation  of  the  agent  dynamics  for  the  deformed
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Kuramoto  model.  That  is,  we  have  computed  the  increments  of  the
coordinates (on the circle) for a long time interval, and from them the
matrix  of  correlations.  A  typical  example  is  shown  in  Figure  6  with
the same color code as Figure 2 for positive correlation and black for
zero or negative correlation.  

In Figure 6, many different correlations of several intensities can be
seen at K  0.2. However, it is not clear from examination of this fig-
ure  how  to  characterize  the  nature  of  the  correlations  nor  how  they
evolve as the synchronization regime is approached. This has led us to
propose  several  other  methods,  which  were  then  tested  on  several
models. The aim is, as stated before, to characterize the nature of the
correlations that occur before synchronization or even in systems that
never synchronize. One method is based on the geometrical characteri-
zation  of  the  dynamics,  another  is  related  to  dynamical  clustering
using  spectral  methods  and  another  is  based  on  a  version  of  the
notion of conditional Lyapunov exponents. 

Figure 6. The  agents’  correlation  matrix  for  the  deformed  Kuramoto  model
when n → ∞ and K  0.2.  

The Geometry of the Dynamics  3.1

Given a set of N time series, a distance between each pair of series can
be defined. One possibility is to consider the Euclidean distance

dij 
1

T - t0

tt0

T

xi(t) - xj(t)
2 . (8)

Then,  using  the  technique  of  multidimensional  scaling  (MDS),  embed
the N time series as points in a Euclidean space. MDS begins with an

N⨯N distance matrix D  dij, and the aim is to find  a configuration

of  points  in  a  p-dimensional  space  such  that  the  coordinates  of  the
points  yield  a  Euclidean  distance  matrix  with  elements  that  are  as
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close  as  possible  to  the  distances  in  the  original  distance  matrix  (but
not exactly the same if the original distances are not Euclidean).  

We  proceed  as  follows:  denote  by  Y  the  matrix  of  coordinates  in
the embedding p-dimensional Euclidean space

Y 

y11 y12 ⋯ ⋯ y1p

y21 y22 ⋯ ⋯ y2p

⋮ ⋮ ⋮ ⋮ ⋮

yN1 yN2 ⋯ ⋯ yNp

(9)

and  consider  the  following  decomposition  of  the  squared  distance
matrix  

dij
2  yi

⟶
- yj

⟶

2
 bii + bjj - 2bij. (10)

Then, the elements of the N⨯N matrix B,

B  YYT, (11)

are recovered from  

bij  -
1

2
dij
2 -

1

n

j1

n

dij
2 +

i1

n

dij
2 -

1

n

i, j1

n

dij
2 , (12)

where  by  a  translation  of  the  origin  in  Rp
 we  make  ∑i1

N yik  0  for

all�k.  
We diagonalize the matrix B reconstructed by equation (12),

B  VΛVT, (13)

with  Λ  (λ1⋯λn)  (λ1 ≥ λ2 ≥ ⋯ ≥ λN)  being  the  diagonal  matrix  of

eigenvalues and V  [V1, … , VN] the matrix of normalized eigenvec-

tors.  Whenever  the  dimension  p  of  the  embedding  space  is  smaller
than N, the rank of B is p (with the last N - p eigenvalues being zero).
We may write  

B  V*Λ*V*T, (14)

where V*
 contains the first  p eigenvectors and Λ*

 the first  p eigenval-

ues. Then a solution for Y is Y  V*Λ*1/2.  
When  the  input  distance  matrix  is  not  Euclidean,  the  matrix  B  is

not positive definite.  In such a case, some of the eigenvalues of B will
be negative and correspondingly, some coordinate values will be com-
plex numbers. If B has only a small number of small negative eigenval-
ues,  it  is  still  possible  to  use  the  eigenvectors  associated  with  the  p
largest positive eigenvalues. 

For  the  time  series  case,  after  the  Euclidean  embedding  of  the
orbits  is  done,  we  obtain  a  cloud  of  points  (a  point  for  each  orbit).
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The shape and effective dimension of the cloud are obtained by reduc-
ing  the  coordinates  to  the  center  of  mass  and  computing  the  inertial
tensor

Tij  
k1

N

yikyjk. (15)

Let λT be the eigenvalues of T. Once the eigenvalues {λk} and eigen-

vectors  {Vk}  of  T  are  found,  the  relevant  quantities,  to  characterize

the  correlations,  are  the  projections  (xi, Vk)  of  the  coordinate  vectors

on  the  eigenvectors,  in  particular  on  those  associated  with  the  largest
eigenvalues.  

Dynamical Clustering  3.2

Here we want to develop a tool to detect the dynamical communities
that emerge from the interaction. For this purpose, the relevant quan-
tities  characterizing  the  dynamics  of  each  agent  are  the  coordinate
increments  

Δi(t)  xi(t) - xit - 1, (16)

which may be used to find a dynamical distance of the agents  

dij  
t1

T

Δi(t) - Δj(t)
2 . (17)

From the distances, define an adjacency matrix

Aij  exp-βdij - dmin, (18)

a degree matrix  

Gii  
j≠i

Aij (19)

and a Laplacian matrix  

L  G -A. (20)

The  lowest  eigenvalues  in  the  L-spectrum  provide  information  about
the  dynamical  communities  insofar  as  they  minimize  the  RatioCut  of
K communities [60],

RatioCutC1, … , CK 
1

2

k1

K WCk, Ck

Ck
, (21)

with WCk, Ck  ∑i∈Ck, j∈Ck
Aij being the sum of the external connec-

tions of the community Ck, and Ck the number of elements in the Ck

community.  
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The Conditional Lyapunov Spectrum  3.3

An  issue  of  some  relevance  in  multi-agent  systems  is  to  compare  the
view  that  each  agent  has  of  its  dependence  on  the  dynamics  of  the
other agents with the actual dependence on the dynamics of the whole
network.  This  is  captured  by  the  notion  of  conditional  exponents.
Conditional exponents, first  introduced by Pecora and Carroll [35] in
their study of synchronization of chaotic systems, have been shown to
be  good  ergodic  invariants  [61],  playing  an  important  role  as  self-
organization  parameters  [62].  The  conditional  exponents  are  com-
puted  in  a  way  similar  to  the  Lyapunov  exponents  but  with  each
agent  taking  into  account  only  its  neighbors,  not  the  whole  system.
However,  for  the  time  average  required  for  the  calculation  of  the
ergodic parameters, the actual global dynamic is used.  

For  a  system  with  the  neighborhood  degree  characterized  by  the
adjacency  matrix,  the  calculation  of  the  conditional  exponents  spec-
trum  is  equivalent  to  the  computation  of  the  Jacobian  of  a  modified
dynamic  where  the  interaction  is  weighed  by  the  proximity  of  the
agents  (i.e.,  by  the  adjacency  matrix).  Nevertheless,  the  Jacobian  is
averaged over the orbits of the actual dynamics. For example, for the
interacting oscillators of the deformed Kuramoto model, the Jacobian
would be computed for a fictitious dynamic,

xit + 1  xi(t) +ωi +
K

N - 1

j1

N

Aijπf
(n)xj - xi. (22)

The  integrated  difference  of  the  conditional  and  the  Lyapunov
spectrum  is  an  important  parameter  to  characterize  the  correlated
dynamics.  

Another promising technique to characterize the correlations occur-
ring  before  synchronization  has  been  developed  by  Lopez  and
Rodriguez [40] who, by considering the Hilbert transform of the cou-
pled  time  series,  obtain  an  evolving  phase  and  then  compute  the
entropy of the phase distribution. We will not deal here with this tech-
nique and refer to [40] for details. 

How  the  techniques  discussed  do  indeed  provide  information  on
the correlations of the collective dynamics will be clear by their appli-
cation to a few models in the next section. 

Illustration of the Tools on Some Models   4.

In this section, the characterization tools described before are applied
to  the  deformed  Kuramoto  model,  to  a  model  of  coupled  oscillators
with  a  triangle  interaction  and  to  an  integrate-and-fire  model.  The
first  two  models  have  essentially  the  same  dynamical  complexity  as
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the original Kuramoto model, widely used as a paradigm for synchro-
nizing  systems,  and  are  representative  of  the  stylized  behavior  found
in many collective systems in biology, population dynamics, socioeco-
nomic  phenomena  and  others.  The  third  model  relates  to  the  neuron
dynamics models used in neuroscience.

The Deformed Kuramoto Model  4.1
The Geometry of the Dynamics  4.1.1

We  have  applied  the  geometrical  technique  to  equation  (2),  the  dis-
tance of agent i to agent j being the sum of the distances on the circle
of the last 100 time steps. Embedding each 100-times orbit as a point
in  Euclidean  space  and  using  MDS,  the  eigenvalues  λ(B)  of  the  B
matrix were obtained.  

The coordinates of the embedded dynamics are then reduced to the
center of mass and the inertial tensor is computed,

Tij  
k1

N

yikyjk, (23)

the  eigenvalues  λkT  being  the  eigenvalues  of  T  and  {Vk}  its  eigen-

vectors.  
Figures  7  and  12  show  the  results  of  the  geometrical  analysis  for

the  dynamics  of  the  model  (equation  (2)).  Figures  7,  9  and  11  show
the eigenvalues of the B and T  matrices and Figures 8, 10 and 12 the
projection  of  the  dynamics  on  the  first  and  second  eigenvectors  of  T.
Of  particular  interest  is  the  fast  reduction  in  the  geometrical  dimen-
sion  of  the  dynamics,  as  measured  by  the  fast  convergence  to  zero  of

Figure 7. Eigenvalues of the B (equation (11)) and T (equation (15)) matrices
for K  0.2.  
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the λT  eigenvalues  for K ≠ 0.  The  whole  dynamic  seems  to  be

approximately  embedded  in  a  two-dimensional  subspace.  Therefore,
the  projections  on  the  first  two  (dominant)  eigenvectors,  which  dis-
play  very  distinct  organized  patterns,  exhibit  the  strong  correlations
that already exist before synchronization sets in. 

The  projection  of  the  embedded  coordinates  {xi}  on  the  eigenvec-

tors  Vk  associated  with  the  largest  eigenvalues  of  T  may  be  consid-

ered  as  the  new  order  parameters  that  characterize  the  correlations
that occur before synchronization. Also of interest are the parameters

Pk  ∑i1
N (xi, Vk). 

Figure 8. Projection  of  the  dynamics  on  the  first  and  second  eigenvectors  for
K  0.2.  

Figure 9. Eigenvalues of the B (equation (11)) and T (equation (15)) matrices
for K  0.4.  
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Figure 10. Projection of the dynamics on the first  and second eigenvectors for
K  0.4.  

Figure 11. Eigenvalues  of  the  B  (equation  (11))  and  T  (equation  (15))  matri-
ces for K  0.8.  

Figure 12. Projection of the dynamics on the first  and second eigenvectors for
K  0.8.  
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Dynamical Clustering  4.1.2

Distances and adjacency matrices were computed from the coordinate
increments (equations (16) to (19)). In Figures 13 to 15, we have plot-
ted the spectrum of the Laplacian matrix L, as well as the structure of
the second and third eigenvectors, to show the nature of the dominant
communities. 

Figure 13. The  spectrum  of  the  Laplacian  matrix  L  and  the  second  and  third
eigenvectors (K  0.2).  

Figure 14. The  spectrum  of  the  Laplacian  matrix  L  and  the  second  and  third
eigenvectors (K  0.4).  
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Figure 15. The  spectrum  of  the  Laplacian  matrix  L  and  the  second  and  third
eigenvectors (K  0.8).  

The Conditional Exponents Spectrum  4.1.3

As explained before, the conditional exponents are obtained from the
Jacobian  weighed  by  the  agent’s  proximity  (i.e.,  by  the  adjacency
matrix)  averaged  over  the  orbits  of  the  actual  dynamics.  For  the
deformed  Kuramoto  model,  the  Jacobian  is  computed  for  a  fictitious
dynamic  

xit + 1  xi(t) +ωi +
K

N - 1

j1

N

Aij πf
(n)xj - xi. (24)

The adjacency matrix that is used is the same that was derived in Sec-
tion 4.1.2.  

In  Figures  16  to  18,  the  spectrum  of  the  Lyapunov  number

μi  eλi   of  the  system  (equation  (2))  is  compared  with  the  condi-

tional number μi
C  eλi

C
 spectrum for K  0.2, 0.4 and 0.8. 

It  can  be  seen  that  for  a  small  coupling,  the  conditional  number
spectrum is still close to the spectrum of the uncoupled system, mean-
ing  that  the  “perception”  of  the  agents  is  very  close  to  a  situation
where  their  dynamics  looks  like  free  dynamics,  although  in  fact  it  is
already  fully  correlated,  as  evidenced  by  the  Lyapunov  spectrum.  As
the  coupling  increases,  the  conditional  number  spectrum  becomes
closer and closer to the Lyapunov spectrum. The integrated difference
of the two spectra is an important parameter to characterize the corre-
lated dynamics. 
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Figure 16. Conditional (blue) versus Lyapunov (red) numbers (K  0.2).  

Figure 17. Conditional (blue) versus Lyapunov (red) numbers (K  0.4).  

Figure 18. Conditional (blue) versus Lyapunov (red) numbers (K  0.8).  
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Coupled Oscillators with a Triangle Interaction  4.2

Here the dynamical law is  

xit + 1  xi(t) +ωi +
K

N - 1

j1

N

gxj - xi mod π, (25)

g(x) being the function displayed in Figure 19. The frequencies ωi  are

also assumed to follow a Cauchy distribution.  

Figure 19. The “triangle” function.  

As  in  the  previous  example,  for  small  values  of  the  coupling  (K),
the  order  parameter  r  fluctuates  around  small  values,  whereas  for
large values the synchronization is apparent (Figures 20 to 22). 

Figure 20. Coordinates xi  and order parameter r(t) for K  0.1 (triangle inter-

action).  
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Figure 21. Coordinates xi  and order parameter r(t) for K  0.3 (triangle inter-

action).  

Figure 22. Coordinates xi  and order parameter r(t) for K  0.7 (triangle inter-

action).  

However,  by  computing  numerically  the  Lyapunov  spectrum
(Figure  23),  we  see  that  already  for  very  small  K  values,  instead  of
N�neutral  directions  there  are  a  number  of  contracting  directions,
implying  a  reduction  in  the  effective  dimension.  This  is  not  apparent
from  the  behavior  of  the  order  parameter  r,  emphasizing  once
more�the  need  to  characterize  the  correlations  that  appear  before
synchronization. 
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For  the  triangle  interaction,  the  dynamical  dimension  reduction  is
not  as  dramatic  as  in  the  deformed  Kuramoto  model,  as  is  evident
from  the  behavior  of  its  Lyapunov  spectrum  (Figure  23).  Therefore,
we expect the correlations to develop at a slower pace as the coupling
(K) increases. 

Figure 23. Numerically computed Lyapunov spectrum for the triangle interac-
tion at K  0.1 and K  0.3.  

The Geometry of the Dynamics  4.2.1

In  the  absence  of  interaction  (K  0),  the  inertial  tensor  has  many
large  eigenvalues  and  the  projections  of  the  orbits  on  the  two  largest
eigenvectors show no distinctive pattern (Figure 24). 

Figure 24. Eigenvalues of the matrix T and projection of the dynamics on the
first and second eigenvectors for K  0 (triangle interaction).  
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It can be seen that the case K  0.1 (Figures 25 and 26) is not very
different  from  the  K  0  case,  showing  that  strong  correlations  have
not yet developed. 

Figure 25. Eigenvalues  of  the  B  and  T  matrices  for  K  0.1  (triangle  interac-
tion).  

Figure 26. Projection of the dynamics on the first  and second eigenvectors for
K  0.1 (triangle interaction).  

It  is  only  for  K  0.3  and  0.7  that  the  dynamics  are  almost  two
dimensional and strongly correlated (Figures 27 to 30). 
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Figure 27. Eigenvalues  of  the  B  and  T  matrices  for  K  0.3  (triangle  interac-
tion).  

Figure 28. Projection of the dynamics on the first  and second eigenvectors for
K  0.3 (triangle interaction).  

Figure 29. Eigenvalues  of  the  B  and  T  matrices  for  K  0.7  (triangle  interac-
tion).  
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Figure 30. Projection of the dynamics on the first  and second eigenvectors for
K  0.7 (triangle interaction).  

Dynamical Clustering  4.2.2

As  before,  the  dynamical  distances  and  the  adjacency  matrix  are
obtained from the coordinate increments. The spectrum of the Lapla-
cian matrix L and the second and third eigenvectors for K  0.1, 0.3
and 0.7 are displayed in Figures 31–33. Some information is obtained
from  these  results,  mostly  for  K  0.3  and  0.7;  however,  the  analysis
of the geometry of the dynamics performed in the previous subsection
seems to be, in this case, a better way to characterize the correlations. 

Figure 31. The  spectrum  of  the  Laplacian  matrix  L  and  the  second  and  third
eigenvectors for K  0.1 (triangle interaction).  
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Figure 32. The  spectrum  of  the  Laplacian  matrix  L  and  the  second  and  third
eigenvectors for K  0.3 (triangle interaction).  

Figure 33. The  spectrum  of  the  Laplacian  matrix  L  and  the  second  and  third
eigenvectors for K  0.7 (triangle interaction).  

A Deterministic “Integrate-and-Fire” Model  4.3

Our  third  example  is  of  a  different  nature  from  the  previous  ones.
The dynamic is defined by  

xit + 1 

xi(t) + si +
k

N - 1

j≠i

θxjt - 1 - xj(t) - 0.4 mod 1, (26)

24 R. Vilela Mendes and C. Aguirre

Complex Systems, 30 © 2021



θ being the function  

x > 0 θ(x)  1

x ≤ 0 θ(x)  0.

The  free  evolution  of  each  unit  is  a  slow  increase  during  many  time
steps followed by a jump (Figure 34).  

This  jump  is,  by  a  neuron  analogy  [7],  interpreted  as  a  spike  and
the  interaction  with  the  other  units  occurs  only  when  they  spike.  In
Figure 35, we display the time evolution of the spiking units obtained
for  k  0,  0.5,  1.2  and  1.5.  The  simulations  are  run  from  random
initial  conditions  in  the  unit  interval  and  the  si  are  also  chosen  at

random. 

Figure 34. The integrate-and-fire free evolution.  

Figure 35. Spiking  patterns  for  different  coupling  values.  200  time  steps,  100
units.
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As the coupling increases, we see an increase in the spiking rate but
not  special  coordination  between  the  firing  times.  However,  above
around  k  1  a  distinct  clustering  of  the  spiking  patterns  is  clearly
observed.  How  these  correlations  may  be  characterized  will  be  seen
later. 

The  deterministic  integrate-and-fire  model  is  of  a  different  nature
as  compared  to  the  two  previous  models.  It  suggests  that  in  addition
to  the  geometric  and  clustering  methods,  which  are  fairly  successful
for  continuous  variable  models,  other  tools  should  be  developed  to
handle pulsing systems of this type. 

To put into evidence the firing  patterns, we have displayed the his-
tograms  of  the  firing  delays  (Figure  36).  Here  we  define  the  firing
delays  as  the  separation  in  time  of  each  firing  from  the  closest  firing
in any one of the other units. 

Figure 36. Histograms of the firing delays.  

A  tendency  to  organization  of  the  system  can  be  seen  in  the  con-
centration  of  the  distribution  toward  smaller  delays  on  passing  from
k  0 to k  0.5, but it is only only after k ≈ 1 that the firings  orga-
nize into a set of well-defined patterns. 

From the firing  delays, a distance between the units may be defined
by  the  mean  of  the  delays  between  each  pair  of  units.  From  the  dis-
tances,  an  adjacency  matrix  was  constructed  and  the  spectrum  of  the
Laplacian matrix computed (Figure 37). Some information on the fir-
ing clusters is indeed obtained for k  1.2 and 1.5; however, the infor-
mation provided by the histograms of the firing delays is sharper. 

26 R. Vilela Mendes and C. Aguirre

Complex Systems, 30 © 2021



Figure 37. The Laplacian matrix spectrum.  

Conclusion   5.

From the models analyzed in this paper, it is clear that, in addition to
synchronization, other types of strongly correlated behavior emerge in
the collective dynamics of interacting systems. What at times has been
dismissed  as  incoherent  behavior  contains  important  collective  phe-
nomena  that  enslave  the  dynamics.  Hence,  it  seemed  important  to
develop  tools  that  might  be  able  to  characterize  qualitatively  and
quantitatively  the  collective  correlation  effects  that  emerge  before  or
instead  of  synchronization.  A  first  step  in  this  direction  has  been
taken in this paper, using geometrical and ergodic techniques.  
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