IFM - 9/89
May 1989

Three-body effects in cold fusion

S. M. Eleutério
R. Vilela Mendes

GTAE - Grupo Tedrico de Altas Energias
Av. Gama Pinto, 2 , P-1699 Lisboa Codex, Portugal

Abstract

It 1s pointed that, whenever the conditions for ergodic motion
of deuterons in a lattice are realized, three-body scattering events
should be taken into account and make an important contribution to
cold fusion processes.

To overcome the Coulomb barrier in DD or DT reactions a large
kinetic energy is required. The emphasis on these two-body
processes 18 due to the relative low density (the plasma) or high
temperatures (the stars) of the medium where fusion is supposed to
take place. In fact there are other many-body processes where the
Coulomb barrier may be overcome at low energies, which however
are not usually considered because they are much less probable, in
the usual environments.

Bound states have been considered and this is the basis for -
catalyzed fusion, wherein a deuteron muon-molecule is formed and
the fact that the p mass is 200 times that of the electron, causes the
molecule to be small enough for fusion by tunneling to occur. It has
been suggested that, because the effective mass of an electron in a
. lattice may be much higher than the free mass, they might form
deuteron molecules. with properties similar to the p-deuteron
molecules. It is however difficult to understand how an electron,
when it ceases to be a collective quasi-particle effect and becomes
individually bound in a deuteron molecule, might retain its collective
properties.

The situation is however different in a scattering process. Not
only may the deuteron be considered to scatter from the quasi-




particle but furthermore, electron shielding of the deuteron positive
charge as seen by the other deuteron is much less effective in a
bound state than in certain configurations of the DeD scattering
process. Consider DeD scattering in the electron rest frame. When
the two deuterons approach the negative scatterer from opposite
sides, their charges are effectively shielded by the negative charge,
for velocity directions in a relatively large cone. Furthermore the
balance of forces exerted on a deuteron by the negative scatterer
and the other deuteron is such that, for some kinematical
configurations, it is pushed towards the interior of the shielding
cone. In this context, the probability for two deuterons to fuse
depends therefore on the likelihood of reaching the neighborhood of
the negative scatterer at about the same time. I. e., this type of cold
fusion hinges on the possibility of enhancing the three body
scattering process and not so much in having enough kinetic energy
to overcome the Coulomb barrier.

For the three-body effect to play an important role one should
have a high probability to find the DeD configuration in a small
neighborhood. Imagining a lattice of negative scattterers, this means
that the density should be, at least, of the order of two deuterons per
unit cell.

If the deuterons are not strongly stabilized near relatively
fixed positions in the absorbing material lattice, the non-integrability
of the n-body problem, consisting of quasi-free deuterons interacting
through Coulomb forces with the negative scatterers, makes the
motion ergodic for initial conditions in a set of very large measure.
In first approximation we may therefore wuse statistical
considerations based on available phase space volume for each class
of configurations. We will use a reasoning of this kind to estimate a
lower bound for the three body contribution under ergodicity
conditions.

In the n-body problem consider a volume cell V for which the
probability of containing 2 deuterons and a negative scatterer is

high. It is here that the deuteron density Pp enters because it

defines the size of the cell. The radius Ry of the cell is of order
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We assume the total energy E, of the DeD subsystem to be

very low (Ey~ 0). In the center of mass of the three body system one
has
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where pj=[rjland py=|ry| are the deuteron scalar distances to the
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negative scatterer, 0 the angle between r; and rp and Ty Ty ,T,
the kinetic energies.

From E,~ O one obtains
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as a constraint for the allowed configurations in the reduced
configuration space (pl,pz,e) . This implies
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for g(6)<2 any (pl,pz) pair is allowed and for g(0)>2 the allowed

regions in the (p ,pz)—plane are bound by two straight lines
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The 1mportant point to retain is that in all cases the regions extend
to simultaneous low values of the (pl,pz) pair.

Let as define as r the radius below which the deuterons fuse,

F
i. e. the situation where
2 2 2 :

‘This defines the region
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The area of the intersection of the regions defined by (3) and

2 2
(4) varies in the range (3 - 0.5)ry , i. e. is always of order i for all .

Under the ergodicity hypothesis, we assume a uniform
probability density in the phase space of the three body problem.
The projected measure in the reduced phase space (pl,pz,ﬂ) s
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E, being the T{,T5,T.,p1,p9,0—function defined by Eq.(1) , Xe the
coordinates of the negative scatterer and v the velocities. If we

assume that the weight of the dv measure in the region defined by
the intersection of (3) and (4) is not very different from its average

weight over all phase space, then the relative probability of a fusion
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to move along preferential directions in the lattice, one would have
an etfective dimension reduction of the problem and the exponent 6
in the above ratio should be replaced by 6-¢.

To obtain the number of fusions per unit time one has to
consider the dynamics of the reduced phase, namely the average

speed of the probability flow. For a mean kinetic energy of the
2
e

. If the deuterons were forced

deuterons of order ?R; , one estimates a characteristic time,
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the deuteron mass. Finally, for the number of fusions per unit time
this leads to an order of magnitude estimate of
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We have not assumed any special rigidity of the negative
scatterers. In the limit of fixed scatterers the characteristic time of



the phase space flow in the neighborhood of the r_ region is smaller
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and an enhancement factor K of up to K=( 8 may be obtained.
D
If we now consider a density of two 2 deuterons in a cell of
radius 2 A and, in line with our purpose of obtaining a lower
bound. estimate, take rF=5. 101> cm , K=1 and €=0 we obtain an

estimate on the order of 10°-10% fusions/(second .cm?’).

The lower bound estimates in this note are based on
uniformity assumptions about the projected phase space of the
many-body process which should be checked by detailed
computation.  Nevertheless, the message to retain at this stage is
that, even for very low total energies, there are, in the three body
scattering process, phase space regions of close proximity which are
not particularly suppressed by the Coulomb barrier.

A more rigorous calculation is in progress and will be reported
elsewhere.

We end up by listing the conditions for three-body enhanced
cold fusion :

1. Material affinity for hydrogen to create a high density of
deuterons in the lattice.

2. Weak bounds of the absorbed hydrogen in the lattice to enhance
quasi free motion and scattering processes.

3. Existence of effective negative charge iscatterers in the lattice,
relative to which the deuteron motion is quasi-ergodic.

Remark : For the favorable three-body effects to occur, the
deuterons should be able to explore freely the phase space of the n-
body process. This ergodicity condition will be inhibited if the
absorbed deuterons are localized in more or less fixed places in the
lattice or, in general, if the nature or defects of the lattice are such as
to 1inhibit quasi-free motion.

It may occur that the breaking of ergodicity may be countered
by choosing an appropriate working temperature, imposing an
energy flow through the system, or absorbing another substance
which competes with the deuterons for the stable lattice positions.

[f quasi-free motion cannot take place in the steady-state, the
three body effect may still be seen in situations of forced rupture of
the equilibrium, for example when charging and discharging the
absorbed deuterons from the lattice.



