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Rigorous methods are used to analyze the asymptotic (large time) behavior of gauge-theory Hamiltonians in
the interaction picture. A simple “asymptotic dynamics” for four-dimensional gauge theories is obtained
allowing an explicit construction of asymptotic spaces. The structure of these spaces is studied; and in
particular one proves that for Abelian theories they contain states with an arbitrary number of particles and
antiparticles, whereas for non-Abelian theories either the symmetry is spontaneously broken or the
asymptotic space contains no states with observable charges.

I. INTRODUCTION

In gauge theories, asymptotic spaces and infra-
red phenomena are closely related problems.
Even in QED, where the infrared asymptotic be-
havior exponentiates in a simple manner, the in-
frared phenomena still cause some difficulties.
The conventional asymptotic in and out fields be-
longing to charge-carrying fields do not exist,
and it was only in recent years that appropriate
substitutes for them were proposed.!™?

In non-Abelian gauge theories the problem of
infrared behavior and asymptotic states is of
central importance, in particular because of the
possibility that the infrared structure of quantum
chromodynamics (QCD) may provide a dynamical
mechanism for the confinement of quarks. Con-
trary to earlier speculations, however, there is
no evidence for guark confinement from perturba-
tion theory calculations, although these results
are not very significant because the infrared dif-
ferential equations, suggested by perturbation
theory itself, point to the nonperturbative nature
of the problem.*

One possible approach would be to start from
gauge theories at small distances where, because
of asymptotic freedom, things are supposedly
simple and by successive (nonperturbative) steps
try to evaluate the behavior at large distances.
This is the philosophy behind the use of instantons,
merons, etc.® for this purpose.

Although simple at short distances non-Abelian
gauge theories are tremendously complicated at
intermediate distances and the construction of,
for.example, a good approximation to the vacuum
of the exact theory may be a hopeless task. How-
ever, it is quite possible that, if one goes to the
" other extremity of the distance range and is con-
cerned with approximations that are good for
large distances only, the problem might also be
manageable. This reasoning leads us to attempt
to study directly the asymptotic (large time) dy-
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namics of gauge theories.

As is well known, in S-matrix theory, one deals
with two spaces®: the space 3¢ of actual states
of the system and an asymptotic space 3¢, with
the same asymptotic behavior for large [f|. In
general ¥¢, may be very different from 3, the only
requirement being that given a state ¥ in 3¢ there
should exist states ¢,(¥) and ¢. () in 3¢, such
that -

lim [@IR®IY) - (P.1Q"®)l¢.)| =0, (1.1)

with @(¢) and Q'(¢) being corresponding observa-
bles in 3 and 3¢,.

It is also desirable that for each ¢3¢, there
exist unique ¥,(¢) such that ¢, (¥, (¢))=¢ and
¢-@-(@)=9.

From the mappings ¢, and ¢, one defines the
S matrix as an operator in JC,,

S.=0,9., (1.2)
or as an operator in 3¢,
S=y.¢.. (1.3)

Because in general the space 3C of actual states
cannot be constructed, it is the definition (1.2)
that has practical interest. As long as Eq. (1.1) is
satisfied the asymptotic space may be chosen to be
much simpler than the exact theory and, as we
know from the nonrelativistic Coulomb problem,
still be nontrivially different from a free-particle
space.

Our approach will consist in writing the interac-
tion Hamiltonians in the interaction picture (which
is defined for all times), to use rigorous methods
to isolate the nonintegrable contributions in the
asymptotic large-time expansion and finally con-
struct the asymptotic space from the truncated
Hamiltonian.

This approach is therefore very similar in
spirit to the one used by Kulish and Faddeev? to
deal with the infrared problem in QED. However,
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instead of merely isolating the presumably domi-
nant contributions in the integrals of the interac-
tion Hamiltonian in the interaction picture, by
going further and deriving exact asymptotic ex-
pansions of such integrals it has been possible to
obtain a great simplification in the asymptotic dy-
-namics which makes the problem tractable even
for non-Abelian gauge theories.

In Sec. II one analyzes the asymptotic behavior
of the boson-fermion term which leads to the
asymptotic dynamics discussed in Sec. III. In
particular, one finds a very clear difference be-
tween Abelian and non-Abelian theories, with
Abelian theories allowing spaces with arbitrary
numbers of particles and antiparticles and non-
Abelian gauge theories being either spontaneously
broken or, if unbroken, restricted to asymptotic.
spaces with no observable charges. In Sec.IV a
similar analysis is carried out for the boson
sector of non~Abelian gauge theories.

II. ASYMPTOTIC FERMION-BOSON INTERACTION

Let L be the Lagrangian of a gauge theory of
spinor ¥ (x) fields interacting with vector (gauge)
B (x) fields,

L(x) =8 (y*D, - M)¥ - $ F2"F?

ny s

(2.1)
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D, =6, +igB‘:,XEa-, ["2 "2] AR ’g, (2.2)
F3,=8,B% —0,B} —gfuw.BuB . (2.3)
We will split L as follows:
L=Ly+Lyg+Lyg.
L, is the free Lagrangian
L,=¥@y"8, - M)¥ - 5(3,B) - 8, B, ) (2.4)
and L;y and L;p are the interacting spinor and

self-interacting gauge field terms, respectively;
namely

Lyy =—g¥y"B Xz v, (2.5)

and L;p contains the cross terms arising from
(2.3). In this section we will focus our attention
on the L;y interaction term.

For simplicity, let the spinors have equal
masses, M=m1, In the interaction picture
explicit momentum expansions can be written

where that hold for all times:
B(t,x)= }: f Gy €, (B\)[ag(kN)e™ % ral (kr)e'* ], (2.6a)
1/2 X
Y(t, %)= me—)g;z-(m) [b(ps)u(ps)e = +dT (psh(ps)e?*], (2.6b)

where the momentum-space operators aI , b, and d obey free field equations of motion. Their normaliza-
tion is chosen such that their (anti) commutation relations are

[ba(ps ), b;‘:. (p's')] = 533'63(P _pl)bac ’

[a,(k1), af (B'A")] = (2w, )°6%(k = k)6, 5 -Ogp

(2.7a)

(2.)

The unusual normalization for the boson operators a(kX) was chosen to simplify the form of the asymptotic
expansion of the interaction Hamiltonian. Of course the choice of normalization is arbitrary. Completely
equivalent results would be obtained with, for instance, pure 53(% - k') normalization provided one spec-
ifies that when applied to the relevant states lim,,_.ow,f’za(kk) is finite.

By substitution of the expansions (2.6) and (2.7) in Eq. (2.5) one obtains a long expression for the corre-
sponding interaction Hamiltonian term which, for the benefit of the reader, we reproduce here because
it is from the analysis of its asymptotic behavior that all our results will follow:
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Hpg(t) = WZ > fd31>d31> m

*SS

{“(PS)Y u(p S’) —-bi,.s [“(5_5»\)4&&_& (50=50-c0p_10) ¢

+u(ps v (p's")b ]

(Cwy-p)?

A ’
+€,(d' - D, x)—T(sz—-—p!j—-)- i(p0=p mw,,_p,)g]

- > +p'A +p?0.

[ ( p- pk) i(poép'O*wmp:)t}

+€M(_-ﬁ—-§))‘~) (2 )
Wepape

Db u(p's ) % bpns'[eu(—ﬁ-i'x)“———————-‘ e R

(w.pope)?

> > a +p'A - +$?0~ ,
+€u(p+p’x)—ﬂ—-(ép p) ) g i(50+210- 0y "]

+T(pshy* v(p,sl)dps 9= P s'[el‘(p p, A)M ~4(00-5"0 0w, _ )t

Our purpose is to derive the leading term in an
asymptotic expansion of H,(t) as t —~+~, Let us
analyze the first term in the right-hand side of
Eq. (2.8). For fixed D it involves the following

integration over p’:

f pdp'd(cos B)dg P ?" 0t £ b7Y /(2,00 )2,

(2.92)

where
fp,p")= Z Z mu(ps)y u(p's")b -—;ﬁ

X b yese€u(B=D"Nag(D -0,
(2.9b)
h(p,p’, cos6) = (p* +m*)® = (p" +m?)""
—(p2+p?=2pp’ COSQ+M2)1/2 .
(2.9¢)
It is understood that the physical results are ob- ‘
tained in the limit u?- 0. The exact nature of
this limit is discussed below.
In Eq. (2.9) we perform first the integration in
p’=19’| at fixed cos8 and ¢. The phase

h(p,p’,cos0) has a nondegenerate critical point
(3nr/3p' =0, 8%h/3p'® Q) at

mp cos @
m+ '’

pl "pc

with

(2 Wpr- ,>)2

o’ 2[“'2 +p2(1 = cos? 0)]1/2

dn _ ( 1 )[pz cos?6 ]"”

deZ p‘:?’c—- m+“’ (m+“‘)2+1 <0.
Using the stationary-phase method (see the Ap-

pendix) for the integration in p’, the leading term,,
when |t} - =, is found to be

Vi gmis(nria < my )L/Z
e [ atcoseraopzrip, o) ot
X [Pz cos?f ]3/4 gl Mpipd cos )t
(m + u')z (2wp-59)?

(2.10)

The remaining phase Z(p,p’, cosf) has a critical
point 82 /d cos =0 at cos 6=0. If one applies
again the method of stationary phase to the inte-
gration in cos6 one obtains a vanishing contribu-
tion for the leading term because the integrand
contains the factor p/2~cos?6. This means that
the overall contribution of this critical point van-
ishes at least as fast as [¢{"%2 when |¢]|~ .

One should notice, however, that the method
of stationary phase is applicable only for regular
integrand functions. If there are singularities,
then other methods, namely the methods of the
theory of distributions, mustbe applied to obtainthe
contributions of the regions near the singularities.
If u?=0the integral (2.10) has indeed a singular point
at cosf=1. Inthe neighborhood of = 0the integralin
cos 6 becomes
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%fe ﬁexp[ Frm)? +£tz)1 Bt]

X VB (— +1) £(p,b2)

L (L
[ e

1]

e (b, 0,

where the last step is obtained by the change of
variables
mp
= (p2+m2)ﬂ2 6.
Applying Eq. (A6) this integral is seen to have a
leading asymptotic contribution equal to

m
Tﬂ'ﬂé’ T(5) oo (5m) = if(p,P). (2.11)

Substituting in (2.10) it leads to a contribution of
order |t|™* which cannot be integrated over ¢ and
therefore implies a nontrivial asymptotic behav-
ior. )

A remark is in order concerning the massless
limits u2—~ 0. The denominator that originates
the singular points is

pz COSZB “/2

ey T 212)

(w5-52)° =
For u2>0 this denominator never vanishes,
therefore, if the (massless) gauge theory is con-
sidered as the p2- 0* limit of a massive theory
the interaction vanishes always as fast as [¢]|"32
and asymptotically it would be a free field theory.

A nontrivial asymptotic behavior exists only at
the point pu%=0. Therefore, gauge theories are
qualitatively different from massless limits of
massive theories. If one were to insist on treating
the massless theory as a u?- 0 limit, then the
only consistent possibility seems to be to have
u?<0and a p®~ 0" limit [notice that for u2<0
(2.12) has zeros at cos®6=1+p?/p?].

To complete the calculation of the contribution
of the first term of Eq. (2.8) to the asymptotic
expansion of the interaction Hamiltonian, the
only thing remaining now is the computation of

f(P,P)=il'i_{!} S(p,p3).
From Eq. (2.9b),
lim f(p,p")= Z‘——b* b,
X lim Zp“eu(p =B'Na (B -V,

p'—>p

where we have used Z(ps )y u(ps’) =(p*/m)dgs:.
On the other hand,

lim (}:P (B -BNa, (B - p'k))
D“’P
- =-p*lim a,(p - p'R)

p—
- —Pkad(Ok)e( 6 e*i&( t)r/s ,

where we defined a(0A)e(;) = lim a(p —pN)e T/
the “infrared boson operator.”” Notice that be-
cause the phase contains €(f) = sgnt we are in

fact working with two different infrared operators
for ¢+ and t - = [a(0r). =¢a(0A),]. This
choice is made to simplify the form of the asymp-
totic interaction.

To have the infrared boson operators completely
determined one has to specify their commutation
relations with their adjoints. From Eq. (2.7b) one
sees that the unusual normalization chosen for
the a(kA) operators is, in fact, the one appropriate
to have a consistent limit when k and k’ approach
zero. Because (2w,)*63(k —&’) is a dimensionless
quantity we can consistently set

[24(0N), a (OX")] =const X 8, 40,5,

or considering the constant absorbed in the defini-
tion of the operators, we can obtain simply

[@,(0), @] (OA*)] = 6, 545, -

Putting together the results of all calculations one
finally obtains, for the leading asymptotic behav-
ior of the first term of Eq. (2.,8),

_Tg Zfdp (P +m )12 ﬁsxé bpsau(Ok)s(t)°

The computation of the contributions of the
other terms of Eq. (2.8) follows similar steps,
and we merely make a few remarks about them.
The calculation for the second, seventh, and
eighth terms is absolutely similar to the compu-
tatlon of the first with s1mple replacements of
g axb by daxdT and a by at

For the computation of the fifth term we change
the integral from D to =p. An overall exp(-i2p°%)
phase is obtained multiplying the same phase
exp[ik(p,p’, cosb)] as in the first term. The com-
putation proceeds similarly and the only other
difference lies in the spinors where now the rele-
vant bilinear is

@(-psy u(ps)?
==(0")r, - s [(275 - 1) 1’—;—? + 6“‘] .

The computation of the third, fourth, and sixth
terms is similar to the computation of the fifth
and putting together all contributions one finally
obtains, for the leading asymptotic behavior of
the interaction Hamiltonian,
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1 R a a
HE™) == 178 g 2 depW (QL)‘%E”%NXZ‘QL) [2a(0k)s( 1) + 7 (OR)e( )]
1 - a
g7 i Z f ap (pz zyvz € 2ot gl 'zpsxz_éps‘[aa(()k)s(t)+aI(0k)5(‘)]+C.C., (2.13)

where

Fose =(o");*..-s[(—° - 1) "p" o'“] .

On the integration in P required to compute
matrix elements of this Hamiltonian one should
yet consider the effects of the oscillating phase
exp(—i2p°%). Noticing that dp°/dp =p /(p* + m>)*2,
the only critical point at p =0 is seen not to con-
tribute in the application of the stationary-phase
method because the volume element d3 contains
Dp?*dp and p®— 0 at the critical point. Therefore,
the matrix elements coming from the second term
behave at least as 1/|t|? when |t| - . Therefore,
the asymptotic dynamics is dominated by the first
part of Eq. (2.13) alone.

Obtained by rigorous asymptotic methods, this
asymptotic interaction has a form similar to the
Faddeev and Kulish ansatz? for the asymptotic
dynamics of QED. Although rigorous our result
is actually simpler because it only involves an
integration over one'spinor momentum and the

infrared boson operators are perfectly determined.

We now study the asymptotic dynamics implied
by this interaction for Abelian and non-Abelian
gauge theories.

III. ASYMPTOTIC DYNAMICS

In this section one studies the structure of the
asymptotic space generated by the leading term
of the interaction Hamiltonian, Eq. (2.13),

ﬁ a a
Va0 =-S5 2 [a» (_Izlsxgémznl‘z—éls)
S

pk
X F [aa(Ok)e(t) +a;r (Ok)s( t)] .
(3.1)

All results in this section pertain to the fermion
sector. The asymptotic space for the boson sector
of non-Abelian gauge theories will be analyzed
in Sec. IV,

The asymptotic states (in the interaction picture)
are the solutions |ta)® of the equation

9
5 [ta)? = V2 (t): |ta)® . (8.2)
To solve this equation one has to choose an ap-

propriate basis. For this purpose one first finds
the eigenvalues of a(Or) +a’ (Ox).

In the usual Fock space representation the eigen-
vectors of boson operators are
|0y, a* ®&A)|0), . .., [aT (BV)]P|0), with the lowest-en-
ergy state |0) defined by a(k))|0) =0. If it is also
a(0r)|0y =0, then

[a(0n) +aT (01)]|0y =aT (01)|0) # const|0),

i.e., |0) is not an elgenstate of a(Ox) +at(On).

In the same way [a (on)] IO) is not an eigenstate
of a(0\) +a (07\) Therefore, in the spectrum we
could maintain a(kA)|0) =0 for  # 0 but not for
k=0, Therefore, we have to find a different basis
of vectors that diagonalizes an operator of the
form a+a' (with [a,a']=1).

Although this is not the most efficient and
mathematically correct way of doing it there is
some interest in doing this calculation in the
framework of the Fock space representation,

i.e., in a space with a basis {|n) = (1/vk !)(a")"|0),
n=0,1,2,.. .} Ifa +a' has an eigenvector
@+a")y =x]ry,
its coefficients in a Fock space basis lk) =Z},,c,,ln)
must satisfy
ACp=Cpay VAL +Cpoy (0 + 1)72,
The solution of this equation is

c. =c T/V2)
n=Co gy

where H,( ) are Hermite polynomials. Therefore

e, 3 BEAR Gty g

ta
=coe'“‘ (aT/fz_)2I0> , (3.3)
where in the second step we used the definition of
the generating function for Hermite polynomials.
Defining IQ) as the state corresponding to the
A =0 eigenvector,

;
|y =[r=0)y=c e 2?0y, (3.4)

the space of eigenvectors of a+a’ contains lQ)
and coherent states of the form

Iy =e“'l9). (3.5)

The fundamentally nonperturbative nature of the
spectrum of the Hermitian infrared boson operator
a(On) +at(0n) is clearly seen by attempting for
example to compute the Fock space norm of IQ},
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2"nl

@l9y = eyl 3 O

which, of course, is found to be divergent. This

is really the interest of doing this calculation in
the Fock space basis because one then sees clearly
that the eigenstates of a +a' lie outside the Fock
space, in which case it would be quite hopeless

to obtain a correct evaluation of the infrared ef-
fects in a perturbative way.

Leaving aside the Fock space considerations we
may, in the space of eigenstates of a+aT; nor-
malize IQ) by definition, (QISZ) =1, and have a
set (3.5) of well-defined eigenvectors,

@+ah) e |gy =2 |y,
Reintroducing the polarization indices
|©2) =exp{-[a'(0%) -g*(Ok)]/2}10> )

where a sum over % and a dot product on the
internal indices are implied.
A general eigenvalue of a,(0%) +a;r (Ok) will be

Iy = erEadton) gy 3.7)

(3.6)

where in particular the coefficient A§ in this co-
herent state is chosen of the form

A =v,1°

to have independence between internal and space-
time degrees of freedom,

Let us now treat separately the Abelian and the
non-Abelian cases.

Abelian theory

In this case choose a basis
{I)\> ’ bzls,_ b;,,sn as * a,,,s lh’>}

of fermion states obtained by application of
arbitrary finite numbers of fermion and anti-
fermion creation operators to a particular l)\)
state. In this basis Eq. (3.2) becomes
[<nm|ta>p = Zp:m(t)],

(3.8)

J

U,@)= exp[-zaT(Ok)aT(Ok)] exp[ze(t) lnltI Z fdsp(b;rsbps— Psd,s)

which maps the usual Fock space into the true
asymptotic space. Therefore the S matrix can
be formally redefined,
S = lim UI (t],)SD(t],, tz)Ux (tz) ’

to—> =

A
so that it operates in the usual Fock space.

From Eq. (3.11) it is clear that for ||~ e, the

lh) states are zero-energy states; they form
therefore a degenerate set of vacuums. For each
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]
Za—t‘P:m(t) =(nm| :V2(¢):|ta)®

-4 (2B

-> L—)zpm(t)

m

(3.9)

The normal ordering of :V2(¢): can be carried out
without ambiguity in the interaction picture. The
solution of (3.9) is

zp:m(t) = d)nm(ps lqr

xexp[lé(f)lﬂltl(z Zg——>£‘iﬁ]

m

(3.10)

To compute the energy of the asymptotic states,

wml:HﬂDs:lta}D{;(.?-%Eﬁi)
+Z<q”‘ g][qu )] nmltay® .
(3.11)

When [¢| - e, which is the situation where H? ~HZ,
and the asymptotic states become identical to the
states of the actual theory, the energy becomes

Zp'?+ Eq?n:

e., identical to the energy of a state of n free
particles and m free antiparticles.

The states ¥},(t) of Eq. (3.10) define therefore a
consistent set of finite-energy asymptotic states
for the Abelian theory.

For S-matrix calculations the Dyson operator
Sp(t,, ;) should operate between the true asymptot-
ic states, i.e.,

lim §),().

Itl >

However, notice that, at least formally, one can
define an operator

gVnp-
4 po

]exp[x -3(0)],

r
Ik) one obtains a different space 362 of asymptotic
states.

The physical results, however, do not depend on
the choice of A. In particular each 3¢} is invariant
for global U(1) gauge transformations U(a)
=exp( @) as can be seen from

mm|U(a)lta)® = exp[i aln — m)(nm|ta)®

Hence, the vacuum degeneracy does not imply
spontaneous breaking of U(1) invariance. Be-
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cause of the superselection rule that is known to
operate for gauge charges’ the space 3¢} should be
considered decomposed in disjoint coherent sub-
spaces of well-defined charge,

3@: = qusczq ’

with no superposition of states in different sectors

being allowed as a physical state. U(1) global
transformations also map each 3¢}, into itself.

In conclusion, the states y},(t) of Eq. (3.10) sup-
plemented by the choice of basis (3.8) define a
completely consistent set of asymptotic states for
Abelian gauge theory containing arbitrary num-
bers of fermions and antifermions.

Non-Abelian theory

Denoting by (| a vector of the basis to be chosen in this case, Eq. (3.2) becomes

9 v
Z-g;(ltd)p=—<‘ SZ fd%%l-t-F (bIsX2 _ys+ dﬂs_d;s )

BT ’;0"

D
ta>

To solve this equation one should choose a basis diagonalizing °x*
To be specific let us analyze in detail the case of an SU(2) gauge group. As we will see the treatment
is completely analogous for higher gauge groups. For the SU(2) gauge group,

Lp_of B B-if
! )
2 Pl P

(3.12)

In this case Q;s,ﬁps, QL,ZPS are two spinors, and in writing (3.12) the basis chosen is such that it diagon-

alizes the @, charge.

Let us dlagonahze the matrix. The eigenvalues are 3| ] Denoteby U(A) the unitary matrix that di-

gonahz es 3x°0%,

L°E=UMIMUM), [)=|l]30°.

For this particular fixed A = v,,l“ we therefore choose for the fermion sector of the basis a set of spinors

created by operators 8 ,.() = ut (A)b »s and 6 M =ut ya?

{ l)\) ’ |nm> =EP131(A) v oé’nsn(h)—hsl()") ¢

Therefore, because

e8] s MV,

Zps

n,m=1,2,..

(b s TX°D ps+ 1 s %x“éffa:)l" =E;s()‘)r(7\)_@ps(7\) _Ezs(h)r(k)gps()")

in this basis, the equation for (nm|ta)® =y},(t) is

i) == 37 (2

ZP - 'm) S USOR (3.13)

where g(1) and ¢’(A) (with values +1 or —1) are the charge projections of particles and antiparticles defined
in relation to the A direction in the internal space. The solution of Eq. (3.13) is

Pinl®) =0(psa(0) ' 'g" () exp [ze(t)m-— (L5

a) - E q'(M)] (3.14)

The functions Y(psq(r)|p’s’q’(1)) define the occupation of states with a certain number # of particles and
m antiparticles with well-defined charges quantized along the internal direction.

The asymptotic space 3¢+ is the space of the solutions (3.14). Let us examine the transformation proper-
ties of :vcﬁe under an SU(2) gauge transformation. One obtains from

(nm|U™H(@)U(@)lta)® =X By, s q,
= QUMD 5, Je,

that by applying an SU(2) gauge transformation to
a state containing » particles and m antiparticles,
one obtains a new state containing the same num-
ber of particles and antiparticles but lying in a

200 8 p15r0*° UTH (@)U (@) |10)®
[y UMy + - U™ (@)U (a)lta)?
"(D(l)(a))\l[UT (A)D(lla)T(a)b, .

“+ 2[5 D (U)oU) 20)®,

I

-
different space and having charges quantlzed
along a different internal direction D 1)(oz)k

The global SU(2) transformations therefore map
3¢} into a different space 3¢2(2X of states Y2i2A(t)
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defined in relation to a basis generated by applica-
tion to ID(a))t) of arbitrary numbers of the rotated
operators B f¢=b TSD‘/z(a)U(A) and bps-
=yt (A)DVZT(OBdI:. That is, if 3¢ is the space of
physical states the global gauge symmetry is
spontaneously broken.

The space ch(f)’; is physically equivalent to
e} the only difference is that the eigenstates of
the Hamiltonian are eigenstates of different linear
combinations of the internal generators (Qi)- If
one wants to avoid the spontaneous symmetry
breaking and construct a manifestly [SU(2)] in-
variant theory one may use a suitable restric-
tion in the algebra of observables or explicitly
integrate over the manifold of :!CD(“)" spaces. In
this latter case the basis states are obtained
by direct integrals, namely

10) = [, 1D (@Wan(a),

with u(@) an invariant group measure, is the
invariant vacuum and

[, 83210 (@Wyan(@)
and
| 21210 @map @)

form a basis for one-particle states.

The asymptotic space is in this case the direct
integral space 3, = [#2‘®2du(a) which is the
space of states ¥2{&'2 (), each state being defined
as a continuous set of functions of the form of
Eq. (3.14), i.e., each state corresponds to a
function over #,m, ¢ and also the group space a.

As shown by Strocchi and Wightman’ there is a
superselection rule also for non-Abelian gauge
theories if the symmetry is not broken. One
therefore divides the asymptotic space 3¢, in
sectors labeled by the irreducible representations
of the global gauge group [in the SU(2) case these
are states with a fixed eigenvalue of @;Q;]:

3¢, =:!cf,°> +5c21/2) +3Cf,1)+" ..

In the singlet (zero charge) sector things work
nicely because the singlet operators formed from
B',8,8", 6 are, by definition, invariant for all
global transformations and therefore are the same
for all component spaces and factorize out of the
direct integral. The states in :!(’.,(,“> are therefore
eigenvectors of the charge Q;.

For the nonsinglet sectors, however, it turns
out that (contrary to what one should expect from
a nontrivially charged space) because of the direct
integral operation the expectation value of any
¢; charge is zero. For example,
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The origin of this result is traced to the fact that
in each component space :ICE(‘")" the direction of
quantization of charges is a different one. This
comes about because in the asymptotic space the
eigenstates of the Hamiltonian are nondegenerate
and correspond to well-defined linear combina-
tions of the fermion operators. It is only in the
limit | | - = that the up and down states, say,
become of the same energy but in the limiting
procedure the whole structure is preserved.

With vanishing expectation value everywhere the
charge is a trivial unobservable quantity in any
sector of the direct integral space. Therefore
nothing is gained by using nonsinglet sectors
because the expectation value of the charges
is zero anyway. Furthermore, in the non-
singlet sectors of the direct integral space the
integrated states are not eigenstates of the
charges. Hence, to obtain a space where we can
proceed with a consistent construction of eigen-
vectors and operators one should restrict oneself
to the singlet sector.

All considerations above apply to the case A # 0.
If A =0 no spontaneous symmetry breaking would
occur., However, the point A =0 is unstable in
the sense that any small displacement A + A
leads to a qualtitatively different solution.

I have worked out in detail an SU(2) example.
From the general structure that emerges from
this example it is, however, clear that the same
results apply in general to other non-Abelian
gauge theories.

In conclusion, non-Abelian gauge theories (ex-
cept at the isolated point A =0) are either spon-
taneously broken or the asymptotic space of phys-
ical fermion states contains only singlet states.

I have some comments on this “confinement”
result: Some of the phenomenological views on
confinement in non-Abelian theories make it
depend on some sort of potential growing to in-
finity at large distances. Such a potential which
is known to occur in (1 +1)-dimensional QED
would then require the elementary spinor states
to carry infinite energy and therefore to be un-
observable. This is what we may call an “ener-
getic confinement.”

The situation we have found here for (3 +1)-
dimensional non-Abelian gaugh theory seems
rather different. It is related to a situation where
spontaneous breaking is avoided by a restriction
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on the algebra of observables, corresponding to
a “confinement by symmetry restoration,” a pos-
sibility I have suggested in very general terms
elsewhere.?

For those used to thinking of confinement in
terms of interactions and cancelation of channels
it may seem strange that such a general mech-
anism might lead to such drastic results on the
observation of the “color” quantum number.
Notice, however, that a complicated physical
mechanism may very well exist at the level of
the exact theory. What was studied here was the
structure of the asymptotic space which presum-
ably leads to the same matrix elements as the
exact theory for infinite times. It is therefore
possible that an intuitive physically appealing
mechanism might exist at the level of the exaet
theory which, for lack of more detailed interaction
structure, the asymptotic space can merely miniic
in this very general geometrical way.

IV. BOSON ASYMPTOTIC SPACE

In Abelian theories there are no boson self-
interactions but in non-Abelian theories one has
third- and fourth-order terms,

Lig=L§ +L§,
L (x) = (/%) f el (0.5 = 0, BL)B" B

+B%BS (0*B% - 8"B**)], (4.1)

LY (%) = =(2/4) fave fapec:BLBS B B, (4.2)
The analysis is very similar to the one for the
boson-fermion interaction term. Using the mo-
mentum expansions and integrating over space the
contribution of the third-order terms to the
Hamiltonian is

€)= it 3 Lhd’k ek o €l —hy (6] (00

(4wpwy

AAAN

X Re {ia,, (k)\)[

(2wg-p

ek +k’A")

(2w,

(k' —k\""
(2wpeay)?

Eu(—k - klkl')
(Zw.,,..k.)z

i(i_iLlT

) afen e - w')e-*(wrwwwk'-vt]}.

y (BN Yay(=k = RIAIT) @ K Opr ooy g )t

al (e"\ )aT(k BN e~ Hwp=wpr=wppe)t

@yl Yal (b + RIAI") @79kt Gt = ape)t

(4.3)

The phases and denominator singularities in these integrals are similar to those in Eq. (2.8) and a similar

analysis leads to a leading contribution,

HY ()= —Hgﬁ’ 2 I e Faeile] BV)ay(80) - a,0)a] )], 00) o + af 00N

For the fourth-order term,

2 .
B ()= f B f g BLBS fgoeB* P B

1 (d%,d%,d%, 3

_&
4 fabcfabc (2,”)3 (8(1),_ wz ws)z

A AaA3rg

(4.4)
€, (ko0 )€y (R, )€" (Rghy)e” (B M,)
X 2Re (a,:' (B A)al (fy)y)ay (kshy)a, (k, +ky—kyA,)
expli(w, + W, = Wy = Wiuy-5)t] )
X foee]) 4.5
(2wp.qp-g) (4.5)

Let us analyze for example the integral

3 expli(w, + w, — w, —
S rsstes st T

Wiez-3)t] .

Choosing 0 and ¢ as the angles of k, with the di-

r

rection of El +E2, the analysis of the asymptotic
behavior proceeds as in Sec. II, leading to

I -
emis( ')'/4f(k1,k2, k, +k2) gilorrwa=wiep)t i

i

1
Tel



The integration in d°, then contributes at least
another 1/[t| factor, hence AP (t) is at most

of order 1/[t|? and therefore does not contribute
to the asymptotic dynamics.

The leading 1/|¢| contribution of the third-order
term, Eq. (4.4), defines (in the interaction pic-
ture) the simplified Hamiltonian V/2 that one
should use to build the boson sector of the asymp-~
totic space in non-Abelian theories. As before
one uses the eigenvectors of the infrared opera-
tors,

T
) =ea§aa(ok)m> , M=p,l°.

Operating on these states V’2(¢) becomes

1 Z[(4k2)2 "vlcifabc
X [a} (B\)ay(A) = ag(kN)af (k1))
(4.6)

To proceed, let us specialize, as we have done
in the discussion of the fermion sector, to an
SU(2) gauge group. As before the general struc-
ture of the results obtained in this particular group
can be carried over in a straightforward manner
to higher gauge groups.

The equatlon obeyed by the asymptotic boson
states ¢M(t) is

V.;?(t)

z'a%<¢>f.‘(t) =(n|:V2@): o)

= Z f(4kz kovifo.

x nlal (kuaykw)|e) .
(4.7)

The combination Z f,;.l° is a nondiagonal Hermitian
matrix in the internal space

which can be diagonalized by a unitary transfor-
mation

utamun) =|1] 0
-1

Defining the new boson operators ah(kp.)
=yt (Ma(kp) and a basis

{lA')r gh(kl,l"l']_)"'gh(knl“‘n)l)“)}y (4-8)
the solution of Eq. (4.7) is
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on(t) = p(kpug(A))
X exp [—ze(t)ln ] Zk‘ nv,llfh(x)]

(4.9)

where the ¢;(A) are the boson charges (+1 or 0)
defined in relation to the A direction in the internal
space.

The states ¢X(t) define the boson sector 3¢} of
the asymptotic space for the non-Abelian theory.
The structure is quite similar to the one found
for the fermion sector with :K'.:B being noninvariant
for global gauge transformations (except at the
isolated A =0 point). We may therefore skip the
detailed analysis of Sec. III and state, as before,
that for non-Abelian theories either there is
spontaneous symmetry breaking or if the breaking
is avoided by symmetry restoration the charges
are not observable and a consistent boson asymp-
totic space should be restricted to the singlet
sector.

As concerns the relevance of the present re-
sults to the quark-gluon theories of strong inter-
actions, one should expect that in a situation of
unbroken color symmetry, gluons are, like
fermions, only observable in color-singlet
combinations. If gluons are flavorless, “truly
neutral gluon bound states” would be as probable
as color-singlet fermion states.

APPENDIX: ASYMPTOTIC METHODS

In this appendix we summarize the mathematical
results used in the text to find the asymptotic
behavior of functions defined by integrals.

1. Stationary-phase method
Let

b
Fi)= [ & aax &)

and let the phase %(x) have a certain number N of
nondegenerate critical points

an &
A% | goe, ° dx?

+0,

x%=c¢i

in the interval (a, ). Consider

\/_Ft-N f“""l‘/—- $ 100 £\
T ()—g . t| € P f(x)ax

=Z‘Ii9
i

where the decomposition of the interval (a, b) in
subintervals is such that ¢, =a, ay., =b, and
¢; €(a;, a;,,). Define
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K, (t) = f .ai” VIt € Pax (A2)

and €(¢)=sgnf. Then
I;=K;(t)f(c;)

f VIt| €9 f(x) = flea)

R (O)(c) + 5 (f" [, () - O @)

zey_t) [t f

X) = Jx) =f(ci)
h(x) :

If all the functions involved in Eq. (A3) are
regular, .

et MAf 1 (x), (A3)
where

filx

N
Lim Vig| F(6)= 3 ki) f(c:) a9

and the problem is reduced to the computation
of the asymptotic limit of K;(¢).
Making in Eq. (A2) the change of variables

¥ =vilh(x)=h(c))], 7vi=sgnt
i i/ i~ dx

x=c§

and applying the same reasoning as in (A3) and
(A4) for the nondegenerate critical point at y =0,
one obtains

x=ci] :

. ) azh 12
limk; (¢) = &' ted) [w/i/('y; ;i—;g)
. 1 ity;y2
X lim \/'I'tl e i dy

¥ay, )
t—>to “y(a;)
x=ci]

d2n 1/2
= [ﬁ/(}’i Ep)
x exp{i[th(c;) +€(tyin/4]},
and the final result is
. x &h \ ]
tl_{l;flV.l-tlF(t)=;f(ci)[ﬁ/(Yta?> vt

x exp{i[th(c;) +€(tyy;n/4]}.
(A5)

2. Some singular integrands

As we have remarked the method of stationary
phase applies only to regular functions, for if
there are singularities Eq. (A4) does not neces-
sarily follow from Eq. (A3).

To find the asymptotic behavior of functions
such as (sinxt)/|x|? and (cosxt)/|x|? that are
singular at x =0, one uses the methods of the
sequential approach to the theory of distribu-
tions.? Namely, given a sequence of functions
one constructs primitives of successively higher
orders until one finds a sequence whose limit
belongs to the class of equivalence of a known
continuous function. After this is found the
limit of the original sequence is identified with
the distribution that is the appropriate generalized
derivative of the continuous function.

Denoting by P the primitive, one finds, for

0<p<1,
0, x<0
. -pSinxt _
(ume ) -4 0 w0y (o,
-c’, x=0
0, x<0
. cosxt .
P(}}mtl "W)= 2c, x>0, ={2co(x)},
c, x=0
—— T e T
T 2T (p) cos(pm/2)’ T 2T(p)sin(pn/2)’

e., the sequence of first-order primitives tends
in the first case to a function in the class of
equivalence of the zero function and in the second
case to an element of the equivalent class of the
piecewise continuous 2¢6(x) (whose primitive is
continuous). Therefore,

» Sinxt

li ¢

RSl P (a6
. 1-pCOSXL T

Y M T = Fyeospaym 00)- (A6D)
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