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Nonrelativistic bound states of the non-Abelian gauge potential
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The bound-state problem for the nonlocal potential [c, + ¢,cos((v,)]/r is studied. Exact S-wave solutions are
obtained, which behave logarithmically at the origin, and a second-order (parabolic) approximation is used to study

higher partial waves.

I. INTRODUCTION

In Ref. 1 the leading large-time behavior of the
canonical gauge-theory Hamiltonian was studied.
In particular the kernel (in the interaction picture)
for the static interaction between two currents, in
the center-of-mass frame and when global gauge
symmetry is conserved was found to be

K(p,q)=—[c, + c,cos(tw,)], (1.1)

ltl
where v, is the relative velocity v, = |¥,-7, |.
From this kernel one infers the effective poten-
tial between two charged states in the center-of-
mass frame

Vem. =%[cl+ c; cos(Ly,)] . (1.2)

The constants ¢, and c, depend on the gauge group:
=1, c2—0 for U(1); ¢,=%, c,=2 for SU(2); c,
= c¢;=% for SU(3). The nonlocal cos(év ) sums the

long-range effects of charged soft gluons. The
magnitude of the constant ¢ depends on the infrared
realization mode and when using (1.2) as a phe-
nomenological potential it should be taken as a
free parameter. With the overall coupling con-
stant that multiplies (1.2) the gauge potential has
two free parameters in the non-Abelian case.

The technique used in Ref. 1 to obtain the static
kernels involves canonical quantization around the

trivial vacuum configuration A=0 and large-time
asymptotic expansions in the interaction picture.
It is"therefore possible that at large distances the
non-Abelian gauge potential might still become
modified into a confining potential. This might
occur by topological effects or even by higher-
order dynamical effects (not accessible in a lead-
ing-order asymptotic expansion) leading, for ex-
ample, to pair condensation. The basic claim,
therefore, is merely that (1.2) is the correct in-
termediate-range non-Abelian potential that in
phenomenological applications should replace the
Coulomb part, usually believed to represent the
(nonconfining) gluon exchange contribution.

As a first step towards testing the usefulness of
the potential the properties of its nonrelativistic
bound states are discussed here. A general tech-
nique to deal with this nonlocal problem is de-
veloped in Sec. II, whereby the S-wave exact solu-
tions are obtained. The behavior at the origin of
the S waves is derived in Sec. IV and in Sec. IIl a
parabolic approximation to the potential is studied
which is useful for higher partial waves. Finally
in Sec. V the possible relevance of the results to
quarkonium systems is briefly discussed.

Although this subject is not studied here, one
should point out that the non-Abelian potential may
also give rise to interesting effects in the scatter-
ing states. For example, there will be “scatter-
ing windows” of free wave propagation whenever
the relative velocity is such that ¢, + ¢, cos(¢v,)=0

II. BOUND STATES: EXACT SOLUTIONS

The Schrodinger equation

i 2 _hi2vy2\l/2 . -
[l o5 Ppo=nn

after separation of the angular variables
- F
03 =17 700, 0)

leads to the following nonlocal radial equation:

r®(d® 1(1+1) g2 Lh
{_ﬁ(drz— 72 ) 7 c1+c2cos(m< dr®

24

(2.1)

NI 1))”2)]} F,)=EF,(r). (2.2)
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Let E <0 (bound state) and

_ (8mIE )2 gl m \'" 8IE |\}/2
=S = (i) =) @)
Then Eq. (2.2) becomes
2 1 1/2
O e

The bound-state wave functions are the square-
integrable solutions to (2.4), satisfying the bound-
ary condition F,(0) =0

The problem of solving the nonlocal equation
(2.4) is reduced to a problem in ordinary differ-
ential equations by the use of a Fourier-Hankel
transform :

Fip)= [ aphdlap)s a)da, (2.5)

where 7§’ is a spherical Hankel function of the
first kind:
!

s-t
h(lo)(x) E (l"—' 3) -(sd)eix. (2.6)

§=0

The transform (2.5) and the radial equation (2.4)
then yield

f dofp(a®+ f) - e, + cycos(ta)]}
x¢ (@)aphi” (ap)=

and with (2.6) one derives an ordinary differential
equation for each ¢ ,(a):

1
I+s) ats . d,
gzssl(zis)! da’s {’EE[“ (of+3)9)]

—xas[c, + c,cos(ta)] 4’1}: 0.
2.7)

—

Equation (2.7) is of order (I+ 1) and for high [
values becomes quite involved. This is the price
one pays to convert a nonlocal equation into a
problem in ordinary differential equations. The
exact solution to Eq. (2.7) will be found for I=0
but to estimate level splittings for different orbital
angular momenta an approximation to Eq. (2.4)
will be used instead of (2.7).

S states. Forl=0 Eq. (2.7) is

i(a?+3)== ¢+12a¢> -x[cy tcycos(éa) ]4> 0

with solution

K -
¢(a) =—3—7 expi{—¢ [2xcltan '2a)
a“+ 3

+ACy fa 5;%%22 dy]s.

r
Substitution into (2.5) and a change of variables

leads to

T/2
Fyul p)=—‘/§ fo de cos[;—’ tang —-2xc ¢

-2xc, _/0-0 cos(é tan¢ ’)d¢>'].
(2.8)

This is the integral representation of a general
exact solution to (2.4) for I =0. This function will
be a bound-state wave function only when the
boundary condition at p=0 is satisfied. The (£,))
pairs for which F, (0)=0 were obtained by numer-
ical computation and are plotted in Fig. 1
(forc;=cy=%).

Noting that ) £ =2g%¢/7 the bound-state wave

1-1000
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FIG. 1. Zeros of F, 4(0) [Eq. (2.8)].
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FIG. 2. ‘Radial excitation energy as a function of (A
=2¢%/n.

functions for a given set of fixed coupling constants
are obtained at the intersections of A £ =const

lines with the lines of zeros in Fig. 1. The bound-
state energies are, up to a constant, the £ co-
ordinates of these intersections.

At (A£),~ 53.2 one crosses a critical point in the
radial excitation level structure, and above this
value there are two levels for the principal quan-
tum numbers n=2 and 3. This is illustrated in
Fig. 2, with all energies being normalized to the
same ground-state energy E =E ,_,.

Similarly above (x&),~ 186 the levels from n =2
to n=>5 are doubled and, in general, above a cer-
tain (A £), all levels from n=2 to n=27 + 1 become
doubled. At very high A £ values the n=2,3,4...
levels collapse to zero whereas the primed levels
n=2',3",4... tend to pure Coulombic values. This
is as one expects on physical grounds because for
very high £ values the nonlocal cosine term in the
potential oscillates very rapidly in momentum
space and the motion of the particle is determined
by the average 1/7 potential. The most interesting
and qualitatively different effects are therefore
expected to occur only for small to moderate
(<60)\ & values.

III. PARABOLIC APPROXIMATION

For small £ values one may expand the cosine
and keep a finite number of terms to obtain useful
local approximations to the nonlocal equation (2.4).
For the approximation '

a1 +1)\/? 2rat 11+
cos[&(—ﬁ+ (pt )> ]51"’%(557‘—’2‘—( * ))

p
one obtains

2 ’
<_g__z(l+1)+ A

ot T ot m)ﬁ(n) =%17‘z({3) ) (3.1)

where \'=x +a/4 and a =02x£2/2. In this approxi-
mation the nonlocal potential is equivalent to a
shifted Coulomb potential 1/(p +a).

For I =0 the solution is obtained from (2.8) ap-
proximating the cosine in the second integral:

- z/2
Fo(p)=g f o cos<ﬂ—2+—‘1 tang -2>\’¢) .(3.2)
(4]
In this approximation the solution is therefore
(1/V2)K ,3(3(p+a)), K being the Bateman func-
tion,2 a particular case of the confluent hyper-
geometric function.
For I #0 the replacement

F¢)=hy(p)p'"
yields

’

ph"+2(l+1)h’+p(p>‘Ta —%)h:O. (3.3)
The bound-state wave functions correspond to
solutions satisfying (& /p)y = (3 —\'/a)r(0)/(21 + 3)
and & ~exp(—p/2) at infinity. This fairly simple
matching problem was solved numerically for
cy=%. The allowed (£%,)) pairs are plotted in Fig.
3, the stability of the numerical algorithm being

FIG. 3. &%, A pairs corresponding to bound states of
the parabolic approximation, Eq. (3.1).
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FIG. 4. 2S-2P splitting from the parabolic approxima-
tion scaled by the exact radial level energies.

tested through comparison with the analytical so-
lution (3.2) for 1=0.

The dashed lines in Fig. 3 are the curves cor-
responding to the exact solution for I =0, Eq.
(2.8). Comparison of the exact and the approxi-
mate [ =0 curves shows that although they are
quantitatively different they have similar shapes.
This suggests that a not too unrealistic estimate
of the level splittings (for small & values) might
be obtained by scaling the splittings of the approxi-
mate equation by the exact radial excitation differ-
ences, i.e., if E[nl] is the exact energy of the nl
level and e[nl] the corresponding energy of the ap-
proximate equation one sets

e|28|-e[2P|

ERS]-E2P]™ (o8 —e[1s]

{E[28]-E[15]}

and in general

E[n8]-E [nl]~ €[nS |1 —¢€nl

The result of such a calculation for the 2P state
yields the estimated splittings plotted in Fig. 4,
all energies being normalized to the same ground-
state energy.

e Ll s - (- ]

analytical form, namely a polynomial times
exp(—p/2). This is also true for special cases of
the approximate solution f‘o(p), when x and & are
such that 2)'= 2\ +2£%/8 is an even integer. Then
the Bateman function K,,. is the difference of two
Laguerre polynomials. Because simple analytical
forms may be useful for practical calculations I
have listed in the following tables some 1S and 2S
normalized wave functions. The notation is

folp)=c 3 a,p"exp(~p/2),

all functions being normalized to f:f-o(p)dpzl.
Also listed is the value ®(0)= [ﬁ,(p)/p],=o.

Exact and approximate solutions have (for small
£)) qualitatively similar spectra and for large p
behave in a similar way. In particular they both
display increasing spreading when & grows. How-
ever, one anticipates distinct behavior for small
p values because then large values of @ can con-
tribute to the integral transform (2.5) and
1- §2a2/2 is no longer a good approximation to
cos(£a). The behavior at the origin of the exact
S-wave functions shows some unusual features
and is discussed in the next section.

IV. WAVE-FUNCTION VALUES AT THE ORIGIN
Let

- ® (E.. . ,]
g;g,{(d’)-—z?\ [014) +Czjo- COS(2 tang )d¢ .
(4.1)
From Eq. (2.8)

/2
F)‘,;(p)=i-;2_—‘/0' cos(g- tangb) cosg, (¢ )do

1, “ sin(pa)
+'—ﬂ\/—2- smgm(w/Z)jo' -&T;—%——da

LV2 jom sin(—‘zZ tan¢>

m

X [sing, (¢) —sing, (7/2)d¢ .

The Coulomb radial wave functions have a simple (4.2)
TABLE I. 1S wave functions (parabolic approximation).
A\E ) c aj : aj as a, as ag ag 2(0)

0 0.70710 1 0.70710

3.46410 0.13363 2 1 0.267 26

5.86449 0.011756 16.39230 8.19615 1 0.19270

7.99636 6.6646%1074 235.75 117.875 19.035 1 0.15712

9.9544  2.7669x1075 4896.40 2448.20 443.56 34.769 1 0.13548
11.7852 9.0257x1077 133 652.67 66826.33 12 902.95 1211.242 55.560 1 0.120 63
13.5169  2.4187x10°% 4533902.3 2266952.1 455890.7 47526.38 -2722.197 81.521 1 0.10966




TABLE II. 2§ wave functions (parabolic approximation).

NONRELATIVISTIC BOUND STATES OF THE NON-ABELTIAN... 3309

2(0)

ap

ag .

as

ay

as

az

ay

Ag

-0.707107
-0.276 58
—0.201 05
-0.16419
—0.141 52
-0.12587

0.35355
0.062 97

-2.19615
-17.4403
-235.858
—4561.28
-115573.33

—4.392 30
—34.881
—471.716
-9122.56
—231147.94

3.688 86
6.47771

1.221 63
—10.0302
—434.287
—14520.756

5.7641 x10~3

1
20.3944

449.4258

8.65589
98.304 8
1302.414

3.4807x10-4

9.043 07
11.446 97
13.72416

1

1.5513x107°

1

36.6423

5.4456 x10~7

From

j:da sir;(pa)/(az +4)= [e'”/zﬁ<g> +e"/2E‘(B2>]

and for (, £) values for which F, ,(0)=0 it follows
that the leading behavior of F, ,(p) when p—~0 is

1
FM(P)ZW Singx.c(%)[p(l -y)—plnp/2]
—5‘5—_2—‘ COSg,‘,t(’z—r)

T/2
vt [ tano [singo) - sing, 5 )] a0
(4.3)

where y is Euler’s constant (y =0.5772156...).
Therefore F, ,(p)~ap - Bp lnp and the wave function
of the exact S states behaves like o — 1np at the
origin.

This lnp behavior at the origin is an intrinsic
feature of the nonlocal potential. Referring back
to Eq. (2.4) or (2.6) one sees that it arises because
fda ¢o(a)=0 does not, in general, imply the van-
ishing of f[cl +cycos(éa)]py(a)da. Then the 1/p
singularity at p=0 remains in the equation to be
canceled only by the second derivative of 8p lnp.

A similar reasoning shows that if, by using as-
ymptotic-freedom arguments, one softens the 1/p
behavior of the potential to 1/pInp at short dis-
tances, then, as long as the nonlocal term ¢,
+c¢4cos(...) remains, the wave function is still
infinite at the origin, its leading behavior being in
this case In|lnp|.

In both cases the infinities are sufficiently soft
so as not to be physically troublesome. Indeed
ri(x) =0 as » -0 as required by the Hermiticity of
the radial momentum and although y(») -, the
probability to find the particle in a small sphere
of radius R around the origin remains finite and
vanishes as R - 0. The infinity, however, pre-
cludes the use of the Van Royen-Weisskopf?® for-
mula in its simple form:

TV =1*I") = | $(0) | 2167 a®e?/M % . (4.4)

However, one should remember that the applica-
tion of this formula to the leptonic annihilation of
quarkonia corresponds to a highly idealized situa-
tion where the mass of the constituents m,— < and
the wave functions are smooth at the origin. A
better estimate should be obtained by replacing
|(0)|? in (4.4) by the average value of |y(x)|? in

a sphere of radius 1/mq.! Therefore, if F, ,(p)
~ap —Bplnp the value that should replace |z/)(0)|2
in Eq. (4.4) is
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FIG. 6. Coefficients for the behavior of the S states at
the origin (@ — glnp).

. 4 1/2 1
l$12=<4leEl>3“{a2-<2aﬁ+3ﬁ2)[ln<ln—EJ) 5]

1/2
+ 82 mz(%E—l) } (4.5)

Q

where ‘E ! is, in the notation of (2.3), the binding
energy of the state and the reduced mass m has
been identified with m /2. In Fig. 5 the values of
o and B were plotted for normalized [fo"’Fz(p)dp =1]
1S and 2S wave functions.

V. CONCLUSIONS

I will conclude with some comments concerning
the relationship between the results of this study
and potential models for quarkonium systems.

With the appropriate choice of the masses and
couplings, any potential can accommodate the 1S-
2S splitting; however, factors such as a;
=(E3s —Ey5)/(Eys —E 5) are peculiar to the nature
of the potential. From the level structure in Fig.
2 it is clear that the potential V of Eq. (1.2) can-
not by itself accommodate the values a;=0.6-0.7
found in the  and T families. As mentioned be-

TABLE III. % values for 1S and 2S states of c¢,

fore, V should be looked at as a short-to-inter-
mediate-range potential (playing the same role as
the Coulomb potential in conventional models) to
be supplemented by a long-range potential in phe-
nomenological applications.

We also do not see yet -any evidence for phenom-
ena such as the doubling of radial excitations pre-
dicted for high &\ values. In this connection it is
worthwhile to point out that the short-range part
of the potential is not what is tested by most of the
charmonium data and that a precise knowledge of
the short-range potential will become increasingly
important for the heavier quarkonium families.

For the 25-2P splitting parameter B
=(Eys ~E,p)/(Eys —E 5) one estimates from Fig.
4 3=0.17-0.21 in the range A {=6 —13. Comparing
with 8 =0.28 for the splitting between the y " and
the center of gravity of the 3P, charmonium levels
one concludes that a sizable part of the 25-2P

 splitting might already be due to the short-range

potential and not purely to the long-range part as
in conventional models.

The main purpose of this paper has been to study
in a fairly rigorous manner the nature of the bound
states of our non-Abelian replacement for the
Coulomb potential. For phenomenological applica-
tions, however, one must add a confinement piece,

2 22\ 1/2
v 1
Vm=—§—r{1+005[§(——‘7;2-) ]}+?Vc.(5'l)

As-a first approximation to the study of (5.1) one
might use, in the spirit of Ref. 5, a variational
method using a set of normalized functions

Y (7)=(8m|E |k})!/?F, ,(8m |E | ) *)/v (5.2)

as trial wave functions, & being the variation pa-
rameter to be obtained minimizing the expectation
value of the energy for each level separately.
Because for moderate )& the structure of the lev-
els is nearly Coulombic one may even use as a
first approximation Coulomb wave functions to ob-
tain estimates for the k’s which are then to be used
in the trial functions (5.2). Carrying out this cal-
culation for V,=7%, 7, In(v/7,), with parameters
chosen to fit the 1S and 2S states of cc and bb

bb, and tf bound states.

Confinement Y Y t
potential g 1/p* 7o kis  kys  Ris ks Rig ks
7?2 0.64 0.03 GeV? 1.59 3.69 1.06 1.74 1.00 1.08
v 0.52 0.2 GeV? 2.10 4.61 1.24 2.22 1.03 1.28

Inr/7, 0.57 _ 0.4 GeV

0.29 Gev~—?

1.95 439 1.37 2,57 1.13 1.69




24 NONRELATIVISTIC BOUND STATES OF THE NON-ABELIAN... 3311

bound states, one obtains the corresponding -k val-
ues for these states and for ¢ bound states (see
Table III). The constituent masses used were,
respectively, m.=1.32, 1.33, 1.525, m,=4.86,

4.78, 4.97, and m;=17. The 15-2S mass splittings
obtained for ¢ bound states are 0.99, 1.03, 1.34.
The lower values refer to the logarithmic potential
and the higher values to the harmonic potential.
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