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Quantum corrections to plasma kinetic equations: A deformation approach
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Plasmas, as well as several other many-body systems of technological interest, have been studied mostly as a
purely classical subject. However, in dense plasmas, and in some semiconductor devices, metallic nanostructures
and thin metal films, when the de Broglie wavelength of the charge carriers is comparable to the interparticle
distance, quantum effects come into play. Because the classical kinetic equations are phase-space equations with
positions and momenta as variables, which variables are noncommuting in quantum mechanics, kinetic equations
are not directly applicable to quantum plasmas. Therefore, most treatments consider a full quantum many-body
problem in Hilbert space and then, by reduction, obtain the quantum version of the kinetic equations. However,
quantum mechanics may also be directly formulated in phase space by modifying the Poisson algebra into a new
deformed algebra, hence the classical kinetic equations may also be deformed into their corresponding quantum
versions. This is the approach followed here and applied to derive the quantum corrections to the Vlasov–Poisson,
Vlasov–Maxwell, and Boltzmann equations (in the latter case also within the relaxation-time approximation).
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I. INTRODUCTION

Plasma physics phenomena have been studied mostly by
using purely classical descriptions, yet, if the de Broglie
wavelength λB of the charge carriers becomes comparable to
the interparticle distance (i.e., if V/N � λB = (h/p̄)3, with
N/V the particle density, h Planck’s constant, and p̄ some
mean moment), quantum effects become important [1–6]. We
are thus speaking of dense plasmas, as are present in white
dwarfs, the atmosphere of neutron stars, and intense laser-
solid plasma interactions. In general, many-body charged
particle systems cannot be treated by purely classical-physics
equations when there is considerable overlap of the wave
functions. This is the case, not only of dense plasmas, but also
of liquid metals and semiconductor devices, for which kinetic
equations might also be used, quantum plasma effects being
also relevant for the physics of metallic nanostructures and
thin metal films.

The classical kinetic equations, relevant to plasma physics,
are phase-space equations and, because in quantum mechanics
positions and momenta are noncommuting variables, kinetic
equations have not been considered as immediately applicable
to quantum plasmas. Therefore, most treatments start from a
full quantum many-particle problem in Hilbert space, making
use, for instance, of the Wigner function or the Hartree formu-
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lation, and then, via a reduction process, obtain the quantum
version of the kinetic equations [1–5].

However, quantum mechanics may also be directly formu-
lated in phase-space with a modification of the Poisson alge-
bra to a new deformed algebra. This suggests that the quan-
tum version of the kinetic equations might also be directly
obtained by deformation of the classical kinetic equations. It
turns out that this is indeed possible and simpler than the tra-
ditional approaches. Of particular interest for the applications
are the leading quantum corrections to the kinetic equations,
which may change, for instance, the stability conditions of
their solutions [7].

The paper is organized as follows: In Sec. II we briefly
recall how quantum mechanics can be obtained as a defor-
mation of the classical Poisson algebra; in Sec. III, which
contains the main physics results of our work, we deform
the classical kinetic equations of plasma physics (i.e., the
Vlasov–Poisson, Vlasov–Maxwell, and Boltzmann equations)
to obtain the appropriate quantum corrections to them; finally,
in Sec. IV, we draw a few conclusions.

II. QUANTUM MECHANICS
AND DEFORMATION THEORY

The phase space of classical mechanics is a symplectic
manifold W = (T ∗M, ω), where T ∗M is named the cotangent
bundle over the configuration space M and ω is a symplectic
form [8]. In local (Darboux) coordinates (qj, p j ) the symplec-
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tic form reads

ω =
∑

j

dq j ∧ d p j, (1)

and the Poisson bracket gives a Lie algebra structure to the
C∞ functions on W , namely,

{ f , g} =
∑

j

(
∂ f

∂q j

∂g

∂ p j
− ∂ f

∂ pj

∂g

∂q j

)
(2)

in local coordinates. The transition to quantum mechanics can
now be regarded as a deformation of this Poisson algebra [9].
For example, if we let T ∗M = R2n, then

ω =
2n∑
j=1

2n∑
k= j

ω j,kdx j ∧ dxk =
n∑

j=1

dx j ∧ dx j+n

=
n∑

j=1

dx j ∧ d p j, (3)

with ω j,k = δ|k− j|,n sgn(k − j), δ j,k being the Kronecker sym-
bol and sgn(x) the signum function (i.e., extracting the signal
of x), and henceforth with pj = x j+n. Introducing the bidiffer-
ential operator P( f , g) whose powers are defined according to

Pr ( f , g) =
2n∑

j1,··· , jr ,k1,··· ,kr=1

ω j1,k1 · · ·ω jr ,kr

× ∂r f

∂x j1 · · · ∂x jr

∂rg

∂xk1 · · · ∂xkr

, (4)

P( f , g) is the usual Poisson bracket for functions of x and p,

P( f , g) = { f , g} =
(

∂ f

∂x1

∂g

∂ p1
+ · · · + ∂ f

∂xn

∂g

∂ pn

− ∂ f

∂ p1

∂g

∂x1
− · · · − ∂ f

∂ pn

∂g

∂xn

)
f g (5)

and P3( f , g) is the nontrivial 2-cocycle

P3( f , g) =
(

∂ f

∂x1

∂g

∂ p1
+ · · · + ∂ f

∂xn

∂g

∂ pn

− ∂ f

∂ p1

∂g

∂x1
− · · · − ∂ f

∂ pn

∂g

∂xn

)3

f g

=
3∑

j1, · · · , jn, k1, · · · , kn = 0
j1 + · · · + jn + k1 + · · · + kn = 3

(−1)k1+···+kn 3!

j1! · · · jn!k1! · · · kn!

× ∂3 f

∂x j1
1 · · · ∂x jn

n ∂ pk1
1 · · · ∂ pkn

n

× ∂3g

∂ pj1
1 · · · ∂ pjn

n ∂xk1
1 · · · ∂xkn

n

. (6)

Barring obstructions, we expect the existence of nontrivial
deformations of the Poisson algebra, and existence of nontriv-
ial deformations have indeed been proved in a very general
context [10–13]. They always exist if W is finite-dimensional
and, for a flat Poisson manifold, they are all equivalent to the

Moyal bracket [14,15]

[ f , g]M = 2

h̄
sin

[
h̄

2
P( f , g)

]

=
∞∑

r=0

(−1)r

(2r + 1)!

(
h̄

2

)2r

P2r+1( f , g)

= { f , g} − h̄2

24
P3( f , g) + · · · , (7)

with h̄ = h/2π . Moreover, [ f , g]M = (1/ih̄)( f ∗h̄ g−g ∗h̄ f ),
where f ∗h̄ g is an associative star product,

f ∗h̄ g = exp

[
ih̄

2
P( f , g)

]
. (8)

Correspondence with quantum mechanics formulated in
Hilbert space is obtained by the Weyl quantization prescrip-
tion [16]. Let f (x, p) be a function in a 2n phase space. Then,
if to the function f we associate the Hilbert-space operator

̂�( f ) = 1

(2π h̄)2n

∫
dx

∫
dp

∫
dα

∫
dβ

× f (x, p)e− i
h̄ [α·(x−X̂)+β·(p−P̂)], (9)

where the operators X̂ and P̂ are such that X̂ψ (x) = xψ (x)
and P̂ψ (x) = −ih̄(∂/∂x)ψ (x), we find the quantum commu-
tation relation

[̂�( f ), ̂�(g)] = ih̄̂�([ f , g]M). (10)

On the left-hand side (LHS) of Eq. (10), we have the usual
commutator for Hilbert-space operators and, on the right-hand
side (RHS), the Moyal bracket defined in Eq. (7). Therefore,
quantum mechanics may be described either by associating
self-adjoint operators in Hilbert space to the observables
or, equivalently, staying in the classical setting of phase-
space functions, but deforming their product to a ∗h̄ product
and their Poisson brackets to Moyal brackets. Recalling that
Hamiltonian systems are endowed with a Hamiltonian func-
tional, a bracket, and a Jacobi identity, it is worth saying a
few words regarding the latter. The full formal deformation
series in powers of h̄ that corresponds to the Moyal bracket
Eq. (7) does obey the said identity, but the Pr ( f , g) in Eq. (4)
(sometimes referred to as higher Poisson brackets) do not,
even if they satisfy identities of the Jacobi type [17]. More
precisely, we have [18]

r∑
s=0

1

(2s + 1)!(2r − 2s + 1)

{
P2r−2s+1[P2s+1( f , g), h]

+ P2r−2s+1[P2s+1(h, f ), g] + P2r−2s+1[P2s+1(g, h), f ]
}

= 0, (11)

the standard Jacobi identity following for s = 0.

III. KINETIC EQUATIONS AND QUANTUM
CORRECTIONS

A kinetic equation deals with a probability density
f (x, p, t ) of particles in phase space. The typical form is

∂ f

∂t
+ p

m
· ∂ f

∂x
+ Fext · ∂ f

∂p
= S( f ), (12)
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the LHS being a drift term defining the characteristics along
which particles with mass m move between collisions under
the effect of some external force Fext, and the RHS repre-
senting a collision term. It is therefore an equation involving
a probability distribution in the (x, p) phase space. In quan-
tum mechanics, f (x, p, t ) cannot be a classical probability
distribution because x and p are noncommuting variables.
However, f may be interpreted as a functional of elements in
an algebra with a deformed product and, as discussed before,
this leads to the correct quantum results. It is thus tempting
to obtain the quantum corrections to Eq. (12) by simply
replacing all products by deformed products. Nevertheless,
recalling that at the basis of this interpretation of quantum
mechanics is the deformation of a Poisson algebra, it is more
appropriate to deform the kinetic equation when their (canon-
ical or noncanonical) Hamiltonian structure is exhibited. This
is the approach that we follow below.

A. The Vlasov–Poisson equation

The Vlasov–Poisson equation describing a collisionless
plasma with purely electrostatic interactions is

∂ f

∂t
+ p

m
· ∂ f

∂x
− e

∂φ

∂x
· ∂ f

∂p
= 0, (13)

with e the elementary charge and φ(x, t ) the electrostatic
potential, which obeys Poisson’s equation

∂

∂x
· ∂

∂x
φ(x, t ) = − e

ε0

∫
dp f (x, p, t ), (14)

with ε0 the vacuum permitivity. This constitutes a noncanon-
ical Hamiltonian system [8,19], with the Hamiltonian func-
tional

HVP( f ) =
∫

dx
∫

dp
[ |p|2

2m
+ eφ(x, t )

]
f (x, p, t ), (15)

the time evolution of arbitrary phase-space functionals F [ f ]
being given by the Poisson structure

dF

dt
=

∫
dx′

∫
dp′ f

{
δF

δ f
,
δHVP

δ f

}
. (16)

Remark that, in this continuous, infinite-dimensional formu-
lation, the set of variables is the function f (x, p, t ) itself, with
x and p playing the role of indices. Hereabove {·, ·} stands for
the Poisson bracket in Eq. (5) and, for some functional F [ f ],
the functional derivative δF/δ f is defined according to [8,19]

dF [ f + εδ f ]

dε

∣∣∣∣
ε=0

=
∫

dx
∫

dp δ f (x, p)
δF

δ f (x, p)
. (17)

Hence, taking into account that

δ f (x, p, t )

δ f (x′, p′, t )
= δ(x′ − x)δ(p′ − p), (18)

with δ(x) the Dirac δ distribution, and

δHVP

δ f (x′, p′, t )
= |p′|2

2m
+ eφ(x′, t ), (19)

using Eq. (16) we obtain the classical Vlasov–Poisson equa-
tion Eq. (13) [20]

∂ f

∂t
=

∫
dx′

∫
dp′ f

{
δ f

δ f
,
δHVP

δ f

}
= − p

m
· ∂ f

∂x
+ e

∂φ

∂x
· ∂ f

∂p
. (20)

For the quantum version, all we have to do is to replace
in Eq. (16) the Poisson bracket Eq. (5) by the Moyal bracket
Eq. (7),

∂ f

∂t
=

∫
dx′

∫
dp′ f

[
δ f

δ f
,
δHVP

δ f

]
M

=
∫

dx′
∫

dp′ f
2

h̄
sin

[
h̄

2
P

(
δ f

δ f
,
δHVP

δ f

)]
, (21)

P( f , g) being the bidifferential operator defined in Eq. (4)
via its powers Pr ( f , g). Of special interest, of course, is the
leading quantum correction. With n = 3, the ω j,k matrix in the
symplectic form Eq. (3) has ω j,k+3 = −ω j+3,k = 1, with all
the other elements being zero. Because δHVP/δ f in Eq. (19)
is quadratic in p, all terms in ω j, j+3ωk,k+3ωl,l+3 vanish or,
equivalently, those terms in Eq. (6) with j1 + j2 + j3 = 3
vanish. In addition, since each of the two terms in Eq. (19)
depends either on x or on p, all cross derivatives come to
nought, which means that only those terms in Eq. (6) with
k1 + k2 + k3 = 3 survive. Therefore, we obtain, in the leading
h̄2 order,

∂ f

∂t
= − p

m
· ∂ f

∂x
+ e

∂φ

∂x
· ∂ f

∂p

− eh̄2

24

3∑
j,k,l=1

∂3φ

∂x j∂xk∂xl

∂3 f

∂ p j∂ pk∂ pl
+ O

(
h̄4

)
. (22)

We must say that we can directly obtain this electrostatic
result by setting B = 0 in a previously derived semiclassi-
cal electromagnetic kinetic equation [2], and that its one-
dimensional version coincides with published results for the
Vlasov–Poisson system [1,2,21].

B. The Vlasov–Maxwell equation

The Vlasov–Maxwell equation [22]

∂ f

∂t
+ v · ∂ f

∂x
+ e

m
(E + v × B) · ∂ f

∂v
= 0, (23)

which describes a classical collisionless plasma in an elec-
tromagnetic field [E(x, t ), B(x, t )], is also a noncanonical
Hamiltonian system. There are several variational formula-
tions of the Vlasov–Maxwell system, the most complete one
being probably that in which part of the dynamics is coded
in the Poisson structure rather than in the Hamiltonian [8,23].
As a consequence, and to apply the deformation theory for the
transition to quantum mechanics, we would have to handle
not just the replacement of the Poisson bracket involving
the position and momentum of the particles, but also the
deformation of the electromagnetic-field dynamics. Hence,
and because here we only want to obtain the quantum correc-
tions to the f dynamics, it is more convenient to use the so-
called phase-space Hamiltonian, which has been derived from
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an appropriate action principle using a Legendre transform
[24,25]

HVM( f ) =
∫

dx
∫

dp
[

1

2m
|p − eA(x, t )|2 + eφ(x, t )

]
× f (x, p, t )

+ ε0

2

∫
dx[|E(x, t )|2 + |cB(x, t )|2]. (24)

In Eq. (24), c is the speed of light and E(x, t ) =
−∂φ(x, t )/∂x − ∂A(x, t )/∂t and B(x, t ) = (∂/∂x) × A(x, t )
are the electric and magnetic fields written in terms of the
potential, independent variables [φ(x, t ), A(x, t )]. Because of
the gauge invariance of the electromagnetic field, φ and A are
not uniquely specified, but this we correct by the choice of
the Coulomb gauge (∂/∂x) · A = 0, which pins down φ to the
charge density via Poisson’s equation Eq. (14). The latter is to
be complemented with the equation for A, which reads(

∂

∂x
· ∂

∂x
− 1

c2

∂2

∂t2

)
A − 1

c2

∂

∂x
∂φ

∂t

= − e

ε0c2

∫
dpv f (x, p, t ), (25)

with v given here in terms of the canonical momentum p as

v = p − eA
m

. (26)

The Poisson structure is the same as in Eq. (16) for the f
dynamics and, for this Hamiltonian,

δHVM

δ f (x′, p′, t )
= |p|2

2m
− e

2m
[p · A(x, t ) + A(x, t ) · p]

+ e2

2m
|A(x, t )|2 + eφ(x, t ). (27)

Then, recalling Eqs. (5), (16), and (18), we obtain for the
classical Vlasov–Maxwell equation

∂ f

∂t
= −p − eA

m
· ∂ f

∂x

+ e

[
∂φ

∂x
−

(
p
m

· ∂

∂x

)
A + e

2m

∂|A|2
∂x

]
· ∂ f

∂p

= −p − eA
m

· ∂ f

∂x
− e

(
E + v × B + dA

dt

)
· ∂ f

∂p
, (28)

where we have used (1/2)(∂|A|2/∂x) = (A · ∂/∂x)A + A ×
[(∂/∂x) × A], and with

dA
dt

= ∂A
∂t

+
(

v · ∂

∂x

)
A. (29)

Equation (28) is the same as Eq. (23), but written in the
variables (x, p) instead of (x, v), and so more convenient
for the Moyal bracket deformation, which acts on the former
variables.

The complete quantum Vlasov–Maxwell equation be-
comes then

∂ f

∂t
=

∫
dx′

∫
dp′ f

2

h̄
sin

[
h̄

2
P

(
δ f

δ f
,
δHVM

δ f

)]
, (30)

being worthy to notice that, in the Hamiltonian Eq. (24),
products must also be replaced by ∗h̄–products. Specifically,
from Eqs. (4) and (8) we find

p ∗h̄ A + A ∗h̄ p = 2p · A + ih̄

2
[P1(p, A) + P1(A, p)]

= 2p · A, (31)

where the linearity in p, the single dependency on x of A, and
the antisymmetry of P1( f , g) in Eq. (5) have been accounted
for. Proceeding to compute the leading quantum corrections,
we obtain

∂ f

∂t
= −p − eA

m
· ∂ f

∂x
− e

(
E + v × B + dA

dt

)
· ∂ f

∂p

− eh̄2

24

3∑
j,k,l=1

{
∂3

∂x j∂xk∂xl

(
φ + e

2m
|A|2

)

× ∂3 f

∂ p j∂ pk∂ pl
− 1

m

(
p · ∂3A

∂x j∂xk∂xl

∂3 f

∂ p j∂ pk∂ pl

− 3
∂2Aj

∂xk∂xl

∂3 f

∂x j∂ pk∂ pl

)}
+ O

(
h̄4

)
. (32)

As far as we know, this is the first time such corrections are
explicitly given in terms of the scalar and vector potentials,
although their gauge invariant form written in terms of the
electromagnetic fields is already known [2]. Also, and as a
useful verification, it is easy to check that the Vlasov–Poisson
result Eq. (22) is recovered if we set A = 0 in Eq. (32).

C. The Boltzmann equation

In what follows we are concerned with the kinetics of a
low-density gas of N identical particles described, classically,
by the Boltzmann equation [26]

∂ f1

∂t
+ p

m
· ∂ f1

∂x
= Q( f1, f1) (33)

for the one-particle distribution function f1(x, p, t ). Any in-
teraction between particles (e.g., electrostatic) enters via the
collision term Q( f1, f1) [27–29]

Q( f1, f1)(x, p, t )

= N

m

∫
dp1

∫
d�′|p − p1|σ (|p − p1|,�′)

×[ f1(x, p′, t ) f1(x, p′
1, t ) − f1(x, p, t ) f1(x, p1, t )].

(34)

In Eq. (34), p′ and p′
1 are the outgoing momenta after a two-

particle collision, and p and p1 the incoming momenta, which,
for an elastic process, are linked according to

p′ = p + p1

2
+ |p − p1|

2
n′

p′
1 = p + p1

2
− |p − p1|

2
n′, (35)

with n′ the unit vector pointing along the direction of the unit-
sphere solid-angle element d�′, which is that into which the
relative velocity (p − p1)/m is deflected after the collision.
In addition, |p − p1|/m is the relative speed, which does
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not change if the binary encounter between alike particles is
elastic, and σ (|p − p1|,�′) is the scattering differential cross
section, which is a characteristic of the interaction potential.
The set Eq. (35) can be replaced with

p′ = p − [(p − p1) · n]n

p′
1 = p1 + [(p − p1) · n]n, (36)

where n is some unit vector, in which choice is coded the
interaction potential, and which must verify the condition
(p′ − p′

1) · n = −(p − p1) · n [30]. For a gas of hard elastic
spheres with radius r, Eq. (34) is more conveniently written
as [31–35]

Q( f1, f1)(x, p, t )

= 4Nr2

m

∫
dp1

∫
d�(p − p1) · n

×[ f1(x, p′, t ) f1(x, p′
1, t ) − f1(x, p, t ) f1(x, p1, t )],

(37)

where n points in the direction of d� (from the test particle
at x toward the target particle at x1) and lies on the line
connecting the centers of the two spheres at time of contact,
with the integration in d� restricted by the condition (p −
p1) · n � 0 [36].

To obtain the quantum version of the Boltzmann equation,
basically two approaches have been followed. The first is just
to solve the scattering problem in quantum mechanics and
then to replace, in the classical Boltzmann equation, the clas-
sical by the quantum cross section. For weakly coupled gases,
the Born approximation has been used. The second, more
sophisticated approach starts from the Schrödinger equation
for a many-body problem, writes the evolution equation for
the corresponding Wigner function, and then goes through
series expansions and limiting steps very much analogous to
the classical ones to obtain an equation for the one-particle
Wigner function [37]. The quantum mechanical computation
of the cross section is always, of course, a necessary step
and it depends on the particular interaction potential, but we
have nothing to say about it here. Our attention is to be
focused on, say, the structural term [ f1(x, p′, t ) f1(x, p′

1, t ) −
f1(x, p, t ) f1(x, p1, t )], as opposed to the scattering kernel
|p − p1|σ (|p − p1|,�′), and on the quantum corrections to it.

The Boltzmann equation does not follow directly from a
Hamiltonian, its irreversible nature arising mostly from the
choice of uncorrelated incoming configurations to represent
the collisions [38]. More precisely, it is found that the missing
(reversible) information would be contained in the higher-
order cumulants of the distribution function [33,35,39]. Be-
cause the quantum deformation is only defined for Hamilto-
nian systems, our approach is to proceed as far as possible in a
reversible Hamiltonian framework and only in the final stage,
after the quantum deformation has been taken into account,
do we make use of the specific approximations leading to the
Boltzmann equation. Consider a system of N particles inter-
acting by a two-body potential φ(xα − xβ ). The Hamiltonian
that drives the evolution of the N-particle distribution function

fN (x1, p1, . . . , x j, p j, . . . , xN , pN , t ) is

H ( fN ) =
N∏

α=1

∫
dxα

∫
dpα

×
[

N∑
α=1

p2
α

2m
+

N−1∑
α=1

N∑
β=α+1

φ(xα − xβ )

]
× fN (x1, p1, . . . , xα, pα, . . . , xN , pN , t ). (38)

Taking into account the quantum deformation, the time evolu-
tion of fN is, as before, given by

∂ fN

∂t
=

N∏
α=1

∫
dx′

α

∫
dp′

α fN
2

h̄
sin

[
h̄

2
P

(
δ fN

δ fN
,

δH

δ fN

)]
,

(39)
which, in leading order, yields

∂ fN

∂t
= −

N∑
α=1

pα

m
· fN

∂xα

+
N−1∑
α=1

N∑
β=α+1

∂φ(xα − xβ )

∂ (xα − xβ )
·
(

∂ fN

∂pα

− ∂ fN

∂pβ

)

− h̄2

24

N∑
α,β,γ=1

3∑
j,k,l=1

∂3

∂xα j∂xβk∂xγ l

×
[

N−1∑
α′=1

N∑
β ′=α′+1

φ(xα′ − xβ ′ )

]

× ∂3 fN

∂ pα j∂ pβk∂ pγ l
+ O

(
h̄4

)
, (40)

where we have used the fact that ∂φ(xα − xβ )/∂xγ =
(δα,γ − δβ,γ )∂φ(xα − xβ )/∂ (xα − xβ ). A particular instance
of φ(xα − xβ ), and one that encompasses the so-called
Coulomb model relevant for plasma physics [22], is
the central-force potential φ(|xα − xβ |), in which case
∂φ(xα − xβ )/∂ (xα − xβ ) = ∂φ(|xα − xβ |)/∂ (xα − xβ ) = φ′
(|xα − xβ |)(xα − xβ )/|xα − xβ |. In Eq. (40), the LHS and
the first two terms on the RHS constitute the classical
Liouville equation, from which can be derived a whole
hierarchy of kinetic equations governing joint particle
distributions, from the N-particle down to the one-particle
distribution function, the so-called BBGKY hierarchy
[22,31–35]. Following thus a similar procedure, we integrate
over the N − 1 identical particles to obtain the equation for
the one-particle marginal f1(x, p, t ),

∂ f1

∂t
= − p

m
· ∂ f1

∂x
+ (N − 1)

∫
dx1

∫
dp1

×∂φ(x − x1)

∂ (x − x1)
· ∂

∂p
f2(x, p, x1, p1, t )

− h̄2

24
(N − 1)

3∑
j,k,l=1

∫
dx1

∫
dp1

∂3φ(|x − x1|)
∂x j∂xk∂xl

×∂3 f2(x, p, x1, p1, t )

∂ p j∂ pk∂ pl
+ O

(
h̄4

)
. (41)
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Choosing now a spherical coordinate system centered at x,
such that dx1 = |x1 − x|2d|x1 − x|d�, we make the assump-
tion that the two-body potential is a hardcore potential whose
gradient reads

∂φ(x − x1)

∂ (x − x1)
= μ(|p − p1|,�)δ(|x − x1| − 2r)

x − x1

|x − x1|
= −μ(|p − p1|,�)δ(|x − x1| − 2r)n. (42)

In Eq. (42), μ(|p − p1|,�) allows both for the intensity and
any eventual dependence on relative speed and solid-angle,
and we have made n = (x1 − x)/|x1 − x|. Equation (41) then
reads

∂ f1

∂t
= − p

m
· ∂ f1

∂x
− 4(N − 1)r2

∫
dp1

∫
d�

×μ(|p − p1|,�)n · ∂

∂p
f2(x, p, x + 2rn, p1, t )

+ h̄2

24
4(N − 1)r2

3∑
j,k=1

∫
dp1

∫
d�

∫
d|x1 − x|

×μ(|p − p1|,�)δ(|x − x1| − 2r)

×n · ∂

∂p
∂4 f2(x, p, x1, p1, t )

∂x1 j∂x1k∂ p j∂ pk
+ O

(
h̄4

)
, (43)

which, in the so-called Boltzmann–Grad limit N → ∞ and
r → 0, but (N − 1)r2 → λ−1 with λ constant [31–35], be-
comes

∂ f1

∂t
= − p

m
· ∂ f1

∂x
− 4(N − 1)r2

∫
dp1

∫
d�

×μ(|p − p1|,�)n · ∂

∂p
f2(x, p, x, p1, t )

+ h̄2

24
4(N − 1)r2

3∑
j,k=1

∫
dp1

∫
d�

∫
d|x1 − x|

×μ(|p − p1|,�)δ(|x − x1|)

×n · ∂

∂p
∂4 f2(x, p, x1, p1, t )

∂x1 j∂x1k∂ p j∂ pk
+ O

(
h̄4

)
. (44)

Up to this point we have stayed within the Hamiltonian frame-
work and its quantum deformation, the limit (N − 1)r2 →
λ−1 being simply a scaling low-density limit. Basically, it
states that the ratio between the effective volume of all gas
molecules and the constant volume V of the gas container
behaves like Nr3/V → r/λV → 0, which is also the same
scaling for the ratio between the interaction-potential range
and the mean free path [40]. Incidentally, being still within
the Hamiltonian framework shows that the Boltzmann–Grad
limit can only have a marginal effect on the irreversibility
of the Boltzmann equation, a fact already noticed in the past
[38]. Rather, the irreversible collision term of the Boltzmann
equation is obtained by the restriction to two-body collisions,
factorization of the two-particle marginal into the product of
two one-particle distributions, restriction of the integration
to the incoming particles, and neglect of higher-order corre-
lations [31,33–35,39]. The last choices are actually related,
because factorization implies statistical independence and,
after the collision, the particles are certainly correlated.

So, moving into the irreversible realm of Boltz-
mann’s equation, we proceed with the factorization
f2(x, p, x1, p1, t ) � f1(x, p, t ) f1(x1, p1, t ) and rewrite
Eq. (44) accordingly,

∂ f1

∂t
= − p

m
· ∂ f1

∂x
− 4(N − 1)r2

∫
dp1

∫
d�

×μ(|p − p1|,�)n · ∂

∂p

[
f1(x, p, t ) f1(x, p1, t )

− h̄2

24

3∑
j,k=1

∂2 f1(x, p, t )

∂ p j∂ pk

∂2 f1(x, p1, t )

∂x j∂xk

]
+ O(h̄4).

(45)

We subsequently notice that the collision physics is fully
contained in the integral∫

dp1

∫
d�μ(|p − p1|,�)n · ∂

∂p
f1(x, p, t ) f1(x, p1, t ),

(46)

which enters both the classical and the deformed part of
Eq. (45). We could then immediately write down the final
result, stated in Eq. (49), by invoking the extensive liter-
ature on hard spheres and short-range potentials, and by
directly transposing the results therein [31–35,38,39]. In these
works, the short-range potential is treated by restricting the
calculation to the outer free space beyond the interaction
range, which gives a contribution analogous to the hard-sphere
problem, and then showing that the inner space contribution
vanishes in the Boltzmann–Grad limit. This having been said,
a simple heuristic reasoning might shed some light on the
meaning of their rigorous derivation. Hence, in the evolution
equation Eq. (45), the term n · (∂/∂p) f1(x, p, t ) f1(x, p1, t )
stands for a continuous rate of variation of the phase-space
density product f1 f1 when the momentum p changes under
the action of the force −∂φ/∂x. However, in the limit of the
hardcore potential Eq. (42), the variation of the momenta,
before and after the collision, is discontinuous (as in a hard-
sphere encounter), and the momentum gradient ∂ ( f1 f1)/∂p in
the term above may be appropriately replaced with a finite dif-
ference �( f1 f1)/�p. Incidentally, bear in mind that, because
of momentum conservation, as p changes to p′, so must p1

change to p′
1, according to Eq. (36). Putting it differently, the

∂/∂p operator in Eqs. (45) and (46) acts not only directly on p,
but also indirectly on p1, since p + p1 must be kept constant.
Therefore, we can write

f1(x, p + �p, t ) f1(x, p1 − �p, t )

� f1(x, p, t ) f1(x, p1, t )

+�p · ∂

∂p
f1(x, p, t ) f1(x, p1, t ), (47)

so that, with �p = −[(p − p1) · n] · n as follows from
Eq. (36),

n · ∂

∂p
f1(x, p, t ) f1(x, p1, t )

� f1(x, p, t ) f1(x, p1, t ) − f1(x, p′, t ) f1(x, p′
1, t )

(p − p1) · n
.

(48)
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Since we are only concerned with colliding particles (moving
against each other), and recalling that n points from x toward
x1, the restriction (p − p1) · n � 0 applies.

Replacing thus Eq. (48) in both terms on the RHS of
Eq. (45) leads to Eq. (33), but with the quantum-deformed
collision term

Q( f1, f1)(x, p, t )

= 4(N − 1)r2
∫

dp1

∫
d�

μ(|p − p1|,�)

(p − p1) · n

×
{

[ f1(x, p′, t ) f1(x, p′
1, t ) − f1(x, p, t ) f1(x, p1, t )]

− h̄2

24

3∑
j,k=1

[
∂2 f1(x, p′, t )

∂ p j∂ pk

∂2 f1(x, p′
1, t )

∂x j∂xk

− ∂2 f1(x, p, t )

∂ p j∂ pk

∂2 f1(x, p1, t )

∂x j∂xk

]}
+ O

(
h̄4

)
. (49)

In the thermodynamic limit N � 1, the first, classical
term above recovers the hard-sphere form Eq. (37) if we
choose μ(|p − p1|,�) = [(p − p1) · n]2/m. The quantities
that multiply [ f1(x, p′, t ) f1(x, p′

1, t ) − f1(x, p, t ) f1(x, p1, t )]
in Eq. (49) depend both on the limit (N − 1)r2 → λ−1 and
on the nature of the potential, via μ(|p − p1|,�). Hence,
carrying out a bona fide generalization, we extend Eq. (49)
to an arbitrary scattering kernel |p − p1|σ (|p − p1|,�′), and
replace Eq. (34) with its quantum-deformed version

Q( f1, f1)(x, p, t )

= N

m

∫
dp1

∫
d�′|p − p1|σ (|p − p1|,�′)

×
{

[ f1(x, p′, t ) f1(x, p′
1, t ) − f1(x, p, t ) f1(x, p1, t )]

− h̄2

24

3∑
j,k=1

[
∂2 f1(x, p′, t )

∂ p j∂ pk

∂2 f1(x, p′
1, t )

∂x j∂xk

− ∂2 f1(x, p, t )

∂ p j∂ pk

∂2 f1(x, p1, t )

∂x j∂xk

]}
+ O

(
h̄4

)
. (50)

In the usual construction of the collision term in the classical
Boltzmann equation, the approximations involved may for-
mally correspond to neglecting terms that, for some practical
configurations, may indeed be larger than the newly derived
quantum corrections in Eqs. (49) or (50). Nevertheless, the es-
sential point of our result is that, if all the standard Boltzmann
assumptions are valid, then, not only the cross section, but
also the form of the collision term itself must have quantum
corrections for nonuniform densities.

In this work, we have aimed at deriving the quantum cor-
rections to the very structure of the relevant kinetic equations
in plasma physics, instead of simply infusing some quantum-
ness in quantities entering an otherwise classical equation.
This is why we have assumed classical, Maxwell–Boltzmann
statistics for the identical particles. Hence the remark that,
had we chosen to use bosonic or fermionic statistics,

we would have simply to replace [ f1(x, p′, t ) f1(x, p′
1, t ) −

f1(x, p, t ) f1(x, p1, t )] with [27,41]

{ f1(x, p′, t )[1 + θ f1(x, p, t )] f1(x, p′
1, t )[1 + θ f1(x, p1, t )]

− f1(x, p, t )[1 + θ f1(x, p′, t )] f1(x, p1, t )

×[1 + θ f1(x, p′
1, t )]}, (51)

where θ = −1, 0,+1 indicates, respectively, Fermi–Dirac,
Maxwell–Boltzmann, or Bose–Einstein statistics, and a sim-
ilar replacement should intervene in the term born of the
quantum deformation. Notice, however, that the derivation of
the bosonic and fermionic modifications to the Boltzmann
equation is not a clearcut business, since the assumption of
binary encounters (at the heart of Boltzmann’s equation) be-
comes questionable for degenerate quantum gases [27]. In any
case, in the low-density limit, where the Boltzmann equation
is most relevant, the particles are too rare to make statistical
correlations a dominant effect. It is also immediate to verify,
from Eqs. (49) or (50), that the Boltzmann collision operator
with the quantum corrections yields the same equilibrium
distributions as its classical counterparts Eqs. (34) or (37).
The reason is that, for an uniform gas (or plasma), which
must be the case in equilibrium, the quantum deformation
vanishes and the appropriate equilibrium distribution is given
by equating Eq. (51) to nought.

Note still that any rigorous, formal derivation of the col-
lision operator for the Boltzmann equation always assumes
short-range, hard-sphere-like potentials, be it in the quantum-
deformation approach followed above, or in the known clas-
sical treatments [31–35,38,39]. Moreover, also in the more
heuristic derivations it is assumed that the range of the in-
teraction potential must be short, typically much shorter than
a mean free path (which is essential for the assumption of
molecular chaos) [27,28]. Now, it is well recognized that in
a plasma, where charged particles interact by means of the
Coulomb potential, we must deal with the long-range 1/r
dependency of the latter. It is precisely this long-range tail of
the potential that gives rise to collective effects in a plasma.
In fact, whenever two particles interact at a large distance
from each other, their encounter is not really binary (which is
another crucial assumption in deriving Boltzmann’s equation),
as they are under the electrostatic (or electromagnetic) influ-
ence of many other particles [22,27]. These collective effects
are accounted for by the ensemble-averaged self-consistent
fields (or potentials) that enter the different forms of the
Vlasov equation (sometimes referred to as the collisionless
Boltzmann equation [22,28]). But binary encounters, called
Coulomb collisions, do take place in a plasma, during which
two charged particles get close enough to each other for the
divergent 1/r two-particle Coulomb potential to dominate
the long-range electric field generated by the smoothed out
distribution of the entire charge population. And, because of
Debye shielding, there is indeed an effective exponential cut-
off of the 1/r Coulomb potential, which brings the interaction
range to a distance of the order of the Debye length λD [22,27].
These discrete-particle effects are taken care of by a collision
term such as the one appearing on the RHS of the Boltzmann
equation, where the cross-section entering it can be calculated
according to Coulomb scattering. The simultaneous account
of collective and discrete-particle (i.e., collisional) effects

013210-7



BIZARRO, CORTES, AND VILELA MENDES PHYSICAL REVIEW E 102, 013210 (2020)

must then be included in a full plasma kinetic equation, which
can then be seen as a combination of the Vlasov and Boltz-
mann equations, and deformed accordingly. For instance, the
classical kinetic equation for the Coulomb model, in which the
magnetic fields produced by the motion of charged particles
are neglected, may read

∂ f1

∂t
+ p

m
· ∂ f1

∂x
+ eE · ∂ f1

∂p
= Q( f1, f1), (52)

in which the RHS can be worked out to arrive at the Lenard–
Balescu equation, the subsequent Landau form for the col-
lision operator and, finally, the well-known Fokker–Planck
operator for Coulomb collisions [22]. As for the quantum de-
formation of Eq. (52), our educated guess would say it would
be accomplished by the combination of Eqs. (22) and (50).
Having thus justified the inclusion of the Boltzmann equation
in our paper on the quantum corrections to the fundamental
kinetic equations of plasma physics, we should recall that
the importance and conspicuousness of this equation goes
much beyond the physics of fully ionized, high-temperature
plasmas (where we only need to account for elastic, Coulomb
collisions), encompassing also the fields of low-temperature
plasmas and plasma chemistry (with their myriad of inelastic
collisional processes). This, and the fact that the Boltzmann
equation is key to the kinetic theory of gases and provides the
starting point for a near-exact formulation of transport theory
[27,28], would have justified, per se, our interest in deriving
the quantum corrections to it.

Even in its classical form, solving the integro-differential
Boltzmann equation Eqs. (33) and (34) easily becomes a
daunting task, and things certainly do not get easier when
using the quantum-deformed collision term Eq. (50). This is
the reason why the collision operator is often written in the so-
called relaxation-time approximation, which in the classical
case means

Q( f1, f1) ≈ − f1 − f (0)
1

τ
, (53)

where f (0)
1 is some local equilibrium distribution (locally re-

stored because of collisions) and τ−1 some (possibly velocity
dependent) collision frequency [27,28]. The RHS of Eq. (53)
is known in plasma physics as the BGK form of the collision
operator [42], so that, looking for the quantum corrections
to it, we hope to give an alternative to Eq. (50) that would
be easier to use in practical applications. So, looking at the
scattering kernel in Eq. (50), we start by identifying the
post-collision distributions f1(x, p′, t ) and f1(x, p′

1, t ) with
the locally restored equilibrium distributions f (0)

1 (x, p, t ) and
f (0)
1 (x, p1, t ), whence

N

m

∫
dp1

∫
d�′|p − p1|σ (|p − p1|,�′)

×[ f1(x, p′, t ) f1(x, p′
1, t ) − f1(x, p, t ) f1(x, p1, t )]

≈ N

m

∫
dp1

∫
d�′|p − p1|σ (|p − p1|,�′)

×[ f (0)
1 (x, p, t ) f (0)

1 (x, p1, t ) − f1(x, p, t ) f1(x, p1, t )].

(54)

Subsequently, we recall the rigorous definition of τ as the
inverse of an average collision rate (or frequency) [28],

τ−1(x, p, t ) = N

m

∫
dp1

∫
d�′|p − p1|σ (|p − p1|,�′)

× f1(x, p1, t ), (55)

and assume that deviations from equilibrium are small enough
that there are no significant differences if Eq. (55) is calculated
using either f1 or f (0)

1 . Therefore, Eq. (54) becomes [43]

N

m

∫
dp1

∫
d�′|p − p1|σ (|p − p1|,�′)

×[ f1(x, p′, t ) f1(x, p′
1, t ) − f1(x, p, t ) f1(x, p1, t )]

≈ τ−1(x, p, t )
[

f (0)
1 (x, p, t ) − f1(x, p, t )

]
. (56)

Putting together Eqs. (50) and (56) we then obtain the
quantum-deformed version of the BGK collision operator
Eq. (53), which reads

Q( f1, f1) ≈ − f1 − f (0)
1

τ
+ h̄2

24

3∑
j,k=1

∂2(1/τ )

∂x j∂xk

∂2
(

f1 − f (0)
1

)
∂ p j∂ pk

+ O
(
h̄4

)
. (57)

Of course, when solving the Boltzmann equation using the
relaxation-time approximation, we assume the existence of τ

but we have only rough means of calculating this quantity. A
possibility is to iterate the solution of Eqs. (33) and (57) with
the computation of τ in terms of f1 via Eq. (55), a simpler
approach being to fix τ by using f (0)

1 in the latter.

IV. CONCLUSIONS

We have shown that, using the formulation of quantum me-
chanics as a (Moyal) deformation of the Poisson structure, it
is possible to obtain a simple, direct derivation of the quantum
corrections to phase-space kinetic equations. In the quantum
kinetic equations that are thus obtained, the arguments x and
p of the distributions f (x, p, t ) are elements of a deformed
algebra and so, strictly speaking, are not classical variables.
Consequently, when the leading O(h̄2) correction is used in
dense plasmas (where it may be eventually needed), it must be
kept in mind that interpreting f (x, p, t ) as a classical quantity
is an approximation. Nevertheless it is a controlled, educated
approximation, in the sense that, not only are the quantum
kinetic equations derived in a rigorous manner, but also the
correct classical limit is retrieved by making Planck’s constant
go to zero.

The quantum modifications to the Vlasov–Poisson and
Vlasov–Maxwell equations are certainly physically very rel-
evant for materials involving dense assemblies of charged
particles. As for the quantum corrections to the Boltzman
equation, they are perhaps not so relevant from the physics
point of view, since most of the approximations used (both
in the classical and quantum derivations) apply to rarefied
gases, with small statistical overlap of the wave functions.
Nonetheless, we have included here this equation mostly to
emphasize that, whenever quantum effects are relevant, in
addition to the features encoded in the scattering kernel, also
the structure of the collision term should be modified. Still
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concerning the Boltzmann equation, but within the framework
of the relaxation-time approximation, we have also derived
the quantum deformation of the BGK collision operator [42].
Finally, we wish to point out that, to the best of our knowl-
edge, the quantum corrections obtained in this paper for the
Boltzmann equation are not to be found elsewhere, whereas
quantum modifications to the Vlasov–Poisson and Vlasov–
Maxwell systems have been known [1,2], even if written
differently in the latter case.

Furthermore, the deformation approach followed here pro-
vides a direct, straightforward procedure to derive the quan-
tum corrections to any arbitrary order in h̄. Notice that we have
derived in Eqs. (21), (30), and (39) the full, formal series that
correspond to the quantum, Moyal deformation of the Vlasov–
Poisson, Vlasov–Maxwell, and Liouville equations (the latter
constituting the starting point to derive the quantum-deformed
Boltzmann equation, whose nature, even classically, is non-
Hamiltonian). Whereas these series, which yield the correct
quantum versions of the classical phase-space kinetic equa-
tions, do correspond to a complete Moyal bracket and thus
obey the Jacobi identity [15,17], they may be of little practical
use. That is why we have also given in Eqs. (22), (32), and (40)

the lowest-order quantum corrections (in h̄2) to those same
equations, knowing well that, by breaking the Lie structure of
the bracket, these truncated versions most likely violate the
original Hamiltonian structure. At this stage, it is still difficult
to assess the possible effects this violation may have on the
truncated formulas, yet our best conjecture is that they would
be acceptable vis-à-vis the trade-off between the tractability
of the deformed equations (so they can be effectively ap-
plied to problems of interest) and the preservation of their
Hamiltonian structure. So much so that similarly truncated
equations have been obtained, and proven to be useful, fol-
lowing a totally different approach, with no regard for the said
structure [1,2].
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