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The challenging problems, in the field of control of chaos or of transition to chaos, lie in the
domain of infinite-dimensional systems. Access to all variables being impossible in this case and
the controlling action being limited to a few collective variables, it will not in general be possible
to drive the whole system to the desired behavior. A paradigmatic problem of this type is the
control of the transition to turbulence in the boundary layer of fluid motion. By analyzing a
boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the
transition amounts to the resolution of an generalized integro-differential eigenvalue problem.
To cope with the required response times and phase accuracy, electromagnetic control, whenever
possible, seems more appropriate than mechanical control by microactuators.

1. Introduction

Control of chaos or of the transition to chaos has
been, in recent years, a very active field [Ott et al.,
1990; Hunt, 1953; Pyragas, 1992] (see [Shinbrot,
1995] for a review). With the exception of a few
cases of stabilization of periodic patterns in ex-
tended systems [Lu et al., 1996; Martin et al., 1996;
Boccaletti et al., 1997; Bleich et al., 1997] the tech-
niques that were developed are applied mostly to
low dimensional dynamical systems. The challenge
lies now in finding out whether these techniques ex-
tend to infinite-dimensional systems.

The first aspect preventing a simple extrapola-
tion of the finite-dimensional techniques is the fact
that only a small subset of variables (or some inte-
grated collective variable) is acessible to measure-
ment. Likewise the variables on which one may act
for controlling purposes are even more limited. The
second aspect is that, rather than to stabilize an
unstable periodic orbit (a single mode), what one
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alms in general is to suppress a continuous set of
unstable modes, or to stabilize a particular collec-
tive mode and, at the same time, prevent all other
modes from developing. In this sense the prob-
lem is no longer a standard control problem to be
handled by pole placement, sliding mode or other
standard techniques. Instead, as suggested by the
problem discussed in this paper, the control prob-
lem amounts to the solution of a generalized integro-
differential eigenvalue problem.

A problem of both theoretical and practical im-
portance is the control of the transition from lam-
inar to turbulent motion in a boundary layer flow.
I deal with this problem mostly as an example and
prototype of the kind of questions and mathemati-
cal framework to be expected in the control of chaos
for infinite-dimensional complex systems. However
for the benefit of the reader less familiar with aero-
dynamical issues I have included a few remarks
on the physical and technological context of the
problem.
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By delaying the laminar to turbulent transi-
tion, an order of magnitude reduction in the skin
friction drag is achieved. The technological bene-
fits that may be derived from this reduction, led
to the proposal of several methods for the control
of the boundary layer transition. They are both of
passive and active types and include pressure gradi-
ent control, wall suction, wall temperature control,
polymer coating, compliant walls, etc.

In passive type control [Bushnell & Hefner,
1990; Mendes & Dente, 1998], the aim is either to
induce a modification of the curvature of the veloc-
ity profile, or to break the eddies and absorb their
energy.

On the other hand the active control methods,
that have been proposed [Joslin et al., 1996], aim at
cancelling the growth of the Tollmien—Schlichting
(TS) waves, a known precursor of the transition in-
stability. This is achieved by creating a disturbance
of opposite phase to cancel the TS waves. The wave
cancelling disturbance may be created, for example,
by modulated suction and blowing or by mechan-
ical microactuators. This control requires an ac-
curate set of sensors and actuators. The reaction
time of the actuators is critical to achieve control,
especially if one aims at the feedback cancellation
of nonlinear effects. The fact that some of the spa-
tial growing modes have high frequencies, leads to
the suspicion that mechanical sensors and actua-
tors, even if highly miniaturized, will have a hard
time to deal with the high frequency instabilities
that are known to be present in the transition.

Greater speed and flexibility would be achieved
were it possible to act on the flow by electromag-
netic fields. With the possible exception of elec-
trolytes like seawater, a direct electromagnetic ac-
tion on the unmodified fluid [Gailitis & Lielausis,
1961; Tsinober & Shtern, 1967; Moffat, 1967; Reed
& Lykoudis, 1978; Tsinober, 1990; Henoch & Stace,
1995; Crawford & Karniadakis, 1997] does not seem
possible. However, even for neutral fluids, improved
control of the boundary layer low might be achieved
by injecting in the leading edge of the airfoil a
stream of ionized gas, creating a thin ionized layer
which might then be acted upon by electromagnetic
fields. In [Mendes & Dente, 1998] a detailed dis-
cussion is carried out on the effect of a streamwise
directed electric field on the velocity profile of an
ionized boundary layer, taking into consideration
the fact that an injected stream of ionized gas leads
to a nonuniform charge profile. The study estab-
lishes reference values and design estimates for the

electric fields and ionization densities required for a
significant change of the velocity profile.

In the present paper a methodology is studied
to assess the possibilities of electromagnetic control
of the TS precursor waves. Usually one thinks of
active control in terms of laminarizing the bound-
ary layer flow. However the opposite situation may
also occur because, for example, in stalling prone
situations it might be useful to induce turbulence
to avoid separation. Then the fast reaction time of
electromagnetic control might also be an asset.

2. The Stability Equations

Consider the Navier-Stokes equation
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for an incompressible ionized fluid in an external
electromagnetic field (E, B)
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Pm 1s the mass density, & the electric charge deusity
and 7 the kinematic viscosity. In orthogonal curvi-
linear coordinates, denote by (i, U, W) the stream-
wise, the normal and the spanwise components of
the physical velocity-field U. Define also reference
quantities and adimensional variables
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Typical values for the reference quantities, as used
before [Mendes & Dente, 1998], are U, = 100 m s,
L, =1m, 6 = 10® m, p, = 1.2 Kgm™3,
E, =500 Vem™!, o, =15 pCem™3, v, = 1.5 x
103 m%s~!. Then Ry, = U, L, /v, = 6.66 x 108 and
721—]: and 62/L? = 1075 are small quantities.
Expressing (1) in the adimensional variables
(3), assuming that the product k& of the airfoil



curvature times the boundary layer width is small
and neglecting terms of order R;Y, 6212 and U/c
one is left with
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where v = L,0,E,/U%p, and w = L2/8?Ry, (v =
62.5 and w = 0.15 for the reference values above).

The aim is to study the stability of the steady
state (laminar) solutions of the above equations
with regard to the precursor waves that develop in
the transition region. Therefore the variables are
decomposed into steady state (T, ...) and fluctuat-
ing components (v/,...)

u=ﬂ+d
v=ﬁ+d
w=T+w (5)
p=p+p
E=E+F

and one looks for normal mode solutions of the form

u’ i(y)
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with a similar, but y-independent, form for the elec-
tric field

E' = Eexp{i(az + fz — )}. (7)

From the control point of view this implies the
capability to have the electric field react to the fluc-
tuating velocity field with the same frequency and
wavelength, but eventually with some delay repre-
sented by the phase of the complex amplitude E.
To have this feedback response, a distributed set
of sensors should be available on the surface of the
airfoil. The sensors, of course, cannot measure the
velocity field itself but only some integrated effect,
observable at the coordinate y = 0 (see below).

In the transition region the quasiparallel
hypothesis for the stationary solution is a good ap-
proximation. Namely ¥ = w = 0u/0z = 0. This
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holds for example for one of the scaling solutions in
[Mendes & Dente, 1998]

azo’o(l—z>. (9)

It is the stability and controllability of this solution
that is going to be studied.

By differentiating Eqgs. (4) the pressure terms
may be eliminated. Then, keeping only the linear
terms in the fluctuating fields and using (6) and (7),
one obtains
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with the boundary conditions

(11)

The last three boundary conditions are obtained
from the continuity equation

ial + 9 +ifw =0 (12)
and the last equation in (4).

In situations where the spanwise fluctua-
tions may be neglected, the flow becomes two-
dimensional and a stream function may be defined
for the waves
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Then the stability equation is
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L,
which is a simplified version of the Orr—Sommerfeld
equation with a driving term. The simplification
arises from the fact that terms of order 1/R; and
62/L? have been neglected. In this form the equa-
tion may be integrated once and reduced to a third-
order problem (see below).

3. Stability and Controllability
Results

Consider first the spanwise stability of the scaling
solution (8) without control (E, = E, = 0). The
second equation in (10) may be integrated once and
the integration constant set to zero using the bound-
ary conditions (11). Using the scaling solution (8)
for w and changing coordinates to

n=1-exp <-y\/%> (15)
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with boundary conditions
4(0) =¢'(0) = ¢(1) =0.

Let first E, = 0 (uncontrolled equation). Using
as before a finite difference method and the QZ al-
gorithm with the boundary conditions imposed as
three of the equations in the algebraic system, one
obtains, for the largest value of Re(ic;) and real
f1, the results shown in Fig. 2. It means that there
is a range of frequencies for which there is spatial
growth of the streamwise fluctuations. Therefore
the scaling solution is spatially unstable.

To derive a controlled equation one has to real-
ize that the only physical quantities, that it is rea-
sonable to assume to be observable, are the pressure
fluctuations on the airfoil or the integrated effect of

(19)

one obtalns
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where 8; = fu./vwx? and a1 = oul/vwy?, with
boundary conditions

w(0) =w(1)=0. (17)
Discretizing the (0, 1) interval, the calculation of
the largest growing modes becomes an algebraic
generalized eigenvalue problem which is dealt with
by the QZ algorithm. In Fig. 1(a) one plots the
largest value of Re(iay) for real 6; and in Fig. 1(b)
the largest value of Re(—16;) for real a;. All modes
have negative real parts, the conclusion is that the
scaling solution is both space- and time-spanwise
stable. Therefore we may take @ = 0 and use, for
the streamwise stability, the stream function stabil-
ity equation (14).

For the scaling solution (8), with the same
change of variables, neglecting the term in Ey be-
cause &, /L, is a small quantity, integrating once the
equation and fixing the integration constant with
the boundary conditions, the result is the equation
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the electrical current as seen at the surface of the
airfoil. Pressure fluctuations may be detected by a
distributed set of microphones and the integrated
electrical current fluctuations are essentially the in-
duced magnetic field fluctuations on the spanwise
direction. For definiteness I will assume that a set
of sensors is available to measure the effect of the
electrical current fluctuations. To achieve control,
this measurement is used to modulate a variable
component of the applied electric field. That is

B, = k/ooo dyoo (1 - my)) a(y)

Ue

(20)

with k& as complex proportionality constant, the
meaning of the phase being the control delay. Then,



the controlled equation is
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with C = k'yagug/ 2 /pmrwx®. The controllability
problem is to find out whether all eigenvalues have
negative real parts in the integro-differential prob-
lem defined by Eq. (21). Let 6; = 60, the frequency
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Fig. 2. Space instability of the streamwise scaling solution.

for which the largest Re(iaq) is at its maximum.
For real C, Fig. 3 shows that for C > 1 the largest
mode has spatial decay, hence the solution becomes
stable. For the results in Fig. 4, let C = |Cle'¥
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(a) Space stability of the spanwise modes, (b) Time stability of the spanwise modes.
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Fig. 3. Largest Re(ia1) for the controlled equation (6; = 60

and real C).
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Fig. 4. Largest Re(Za1) for the controlled equation (6; = 60,
|C| = 1.5 and variable phase).

with |C] = 1.5 and variable phase ¢. One sees that
there is a range of phase delays which stabilize the
solution and, conversely, outside this range the so-
lution is strongly unstable.

4. Conclusions

1. Stabilization of a stationary configuration in an
infinite-dimensional system involves the study
of infinitely many disturbance modes, some of
which may grow in time and space. In addition,
the measurable observables, to which some local
control may react, involve the integrated effect
of many variables. Therefore the mathematical
structure of the problem to be solved is expected
to be, as in this example, an integro-differential
generalized eigenvalue problem.

2. The unstabilizing disturbances that need to be
controlled in extended systems have in general a
nontrivial space-time structure. Therefore a set
of distributed sensors and actuators is needed to
achieve a space-time controlling action.

3. The fact that, in practice, only global integrated
variables are observable, restricts the feedback
control to these variables only. Therefore, for
extended systems, there is no guarantee that
control will be achieved in general and success
is only to be expected in particularly favorable
cases.

4. The laminar to turbulent transition, in the
boundary layer, begins with the appearance
of downstream moving waves which at first
grow slowly and may be described by a lin-

earized equation.  After reaching a certain
amplitude however, the waves develop strong
three-dimensional structures and nonlinearities
and a rapid transition to turbulence becomes un-
avoidable. Therefore, if effective control is to be
achieved, it is essential to have a fast and locally
accurate feedback to tame the instabilities before
the spanwise differential amplification of the TS
waves begins to occur. Because it is probably
very difficult to obtain the required speed and
accuracy with mechanical microactuators, elec-
tromagnetic controlling schemes seem worthy
to explore.

5. In this paper the emphasis has been on the con-
trol of the laminar to turbulent transition. A dif-
ferent problem which also has a bearing on the
reduction of the skin friction drag is the control
of the energy transfer mechanisms in the turbu-
lent regime [Sirovich & Karlsson, 1997]. Here too
an efficient electromagnetic control may be effec-
tive in randomizing phases in the energy transfer
cascade.
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