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Abstract

Decomposition of multi-dimensional signals into orthogonal modes, generated by the data itself, has proven to be
a powerful method for the identification of the structures that underlie complex dynamics. This technique is proposed as
an image processing tool. The potential applications of the bi-orthogonal decomposition are data compression,
noise-resistant communications and texture segmentation. The energy and information content of the bi-orthogonal
modes as well as some of the proposed applications are illustrated by several examples.

1. Introduction

The bi-orthogonal decomposition [1], a tech-
nique specially adapted to the analysis of two-di-
mensional signals, is a natural candidate for image
processing. After reviewing the theory of the bi-
orthogonal decomposition (Section 2) we show
how this technique characterizes the information
content and the non-Gaussiuan nature of real
world images (Section 3).

Contour information and small details are asso-

ciated to very low energy modes. Redistributing the

energy among all information carrying modes one
obtains images with improved noise resistance
(Section 4). :

The entropy associated to the bi-orthogonal de-
composition is an important quantity close to the
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actual information content of the image. Of par-
ticular interest is the local block entropy which
characterizes local correlations and is the basis for
a new method for texture segmentation (Section 5).

2. The bi-orthogonal decomposition

The decomposition into orthogonal modes is
a well known procedure in signal analysis referred
to as the Karhunen—Loéve decomposition [6, 10] or
principal component analysis. Given an N-compon-
ent random vector x(f) {i=1,...,N}, the
covariance matrix Q = E [xx"] is diagonalized and
the random vector x(t) expressed as

N

X =Y a)d®, @1

k=1

where eath ¢* is an eigenvector of Q, that is
a column of the matrix 4 that diagonalizes
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Q (Q = AAA", A diagonal). Using the N eigenvec-
tors as a basis, the best (mean-square) P-compon-
ent approximation to the signal x is obtained by
keeping the ¢; coefficients associated with the
largest P eigenvalues. This property is useful for
data compression applications. The Karhunen—
Loeve technique has been used for image process-
ing [9, 14, 15]. The image is divided in small blocks,
each block is taken as a sample of a statistical
signal ‘and the labeling of the blocks plays the
role of a time variable. The expectation value
of the covariance E[xx"] is then taken over these
blocks.

There is, however, another way of looking at the
Karhunen-Loéve decomposition that may be use-
ful for image processing. Let the eigenvalues of Q be

#. Then, defining ¢,(t) = a4(t), Eq. (2.1) is rewrit-
ten as

N

xi(t) = Y, au(t)p®. 22

k=1

The signal appears now as a sum of products of two
families of orthonormal functions of ¢ and of the
discrete variable i. This way of looking at the Kar-
hunen-Loéve decomposition is called the bi-ortho-
gonal decomposition and is particularly useful for
the analysis of data depending on two variables.

In an image, an important part of the informa-
tion content is related to geometrical correlations.
They concern the variation of the gray level along
particular directions and contain the contour and
shape information of the image. This suggests the
use, in Eq. (2.2), of the space coordinates x and y as
the two independent variables.

In all generality the bi-orthogonal decomposi-
tion analyses signals u(x,y) that depend on vari-

ables defined in two distinct spaces (xe X, ye Y).

We summarize the main results concerning this
decomposition and refer to [1] for more details. Let
the signal u(x, y) be a measurable complex-valued
function defined on X x Y, where X and Y are
either R” or Z" or subsets of one of these. The signal
itself is used as a kernel to define a linear operator
U:L*Y)- L*X) by

(U¢)(x)=fu(x,y)¢(y)dy YeLX(Y), (23a)

Y

with adjoint operator U': L*(X) - L2(Y)

W 0)(y) =wfu*a(x, Ye)dx VoeL*(X). (2.3b)

X

With these definitions the analysis of the signal
u(x,y) is the spectral analysis of the operator U. In
general the  spectrum contains continuous and
point spectral” comﬁd"ﬁ‘ts* However, for simpli-
city, we will: assumg ;that yie L*(X x Y) or that
X and Y are compact afid u continuous. This
implies that U is.a. co,mpg"t Qperator and the spec-
trum consists of a countablé set of isolated points.
Then, there is a- oanomca;l‘ dacomposnmn of u(x, y)

. such that

o0

Y adVEG) 24

k=1

u(x’ y) =

is norm-convergent and »
(15 5) = hinYg) =

The functions ®@(x) are the elgémfumctwns of the
operator L = UU", and the ¥,(y) are the eigen-
functions of R = U'U. These functions are related
by

0(1?0(22 (XX >0,

b0 = 07 U, @)

loxy, x5) = J‘“(xb J’)ﬂ*(xz,' y)dy,

Y R

"Y1, y3) = f u(x, y)ulx, yy)dx: )

In the decomposition the eigenvectors @, and ¥,
of the L and R o%)erators appeat’ coupled to the
same eigenvalue o . The products @, ¥} are there-
fore the independent X,Y-structures that compose
the signal. This decoupling of structures occurs
because, as opposed to other methods of signal
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analysis (Fourier, wavelets, etc), the functional -

basis decomposing u is produced by u itself.
From the bi-orthogonal decomposition several
global quantities may be constructed. The square
of the norm of the signal in L*(X xY), which
we call the energy, is the sum of the eigenvalues

E(w) = J u(x, y)u*(x, y)dxdy = ; al. (2.8)

XxY

The dimension of a signal is defined to be the
dimension of the range of U. For the compact
case this is the number of non-zero eigenvalues oj.
The e-dimension of the signal is the number of
eigenvalues larger than & The size of the eigen-
values is a good characterization of the degree of
approximation in the sense that, truncating the
U operator to

P

Up= ) oxuiix

k=1

the norm of the error | U — U, | is smaller than the
first neglected eigenvalue.

Associated to the eigenvalue structure of the bi-
orthogonal decomposition one also defines an en-

tropy by

N
Hgo(w) = — Z prlog pe, (2.9)
k=1
with
o
pk:ZkO‘)%. (2.10)

For the continuum case there will be an infinite
number of modes and the sum in (2.9) may be
replaced by — limy.,, (1/log N) Tr_ | prlogpy.
Notions of entropy relate to the information
content and are useful for image processing [5, 11].
The entropy measures the amount of disorder in
a system and is sensitive to the spread of possible
states which the system can take. For an image, the
simplest idea would have been to make the states
correspond to the possible values which individual
pixels can take. Then, the entropy (associated to the

gray level histogram) is given by

M-1

P(j)log P(j), (2.11)
=0

(
HGL= -

J

where P(j) is the probability of pixel value j and
M is the number of different values which the pixels
can take. However, Eq. (2.11) represents the actual
information content of the image only if the pixels
are all uncorrelated. This is not the case in real
world images. Instead of the original image, con-
sider, for example, an image formed by the differ-
ences of neighbouring pixels. The original image
can be reconstructed from the difference image to-
gether with the value of the first pixel. Therefore,
they contain the same information. However, one
usually finds that the entropy of the gray level
histogram of the difference image is smaller than the
one for the original image. This occurs because the
difference image extracts some of the space correla-
tions existing in the image, hence its entropy is
closer to the actual information content of the
image.

The bi-orthogonal decomposition extracts the
normal modes of the image taking into account
correlations along two coordinate axis. Therefore
we expect the entropy Hpo associated to the
weights of the bi-orthogonal modes to be even
closer to the actual information content of the
image. To test this conjecture we have computed
the gray level histogram entropy, the entropy of the
difference images and the entropy of the bi-ortho-
gonal decomposition for real world and synthetic
images. In general, the entropy of the difference
image is smaller than the gray level histogram en-
tropy. In all cases tested, we have however found
that the bi-orthogonal entropy Hpg is the smaller of
them all. In Table 1 we list the computed values for
a real world image (“bears”, Fig, 13) and the syn-
thetic image used for the textures test in Section 5

- (Fig. 8).
Table 1
Entropy values for the textures and bears images
Image Bi-orthogonal  Histogram Difference
Textures 1.1134 5.1965 2.7945
Bears 0.4260 3.8528 3.4427
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3. Signal analysis by the bi-orthogonal
decomposition

An image is a continuous function u(x, y) of two
variables defined on a rectangular region of the
plane. The value at the point (x, v) is called the
brightness or gray level. Black and white images or
the components of a colour image are therefore
scalar functions represented by [M x N] pixel ma-
trices U. To carry out the bi-orthogonal decompo-
sition of U, the matrix UU" is diagonalized (if
M < N) and the eigenvectors ¥,(y) of U'U ob-
tained from (2.5). The image becomes

M
u(x, y) = Y o pi(x) Wil y). (3.1)

k=1

We then compute the global energy E(u) and the
normalized contribution of each one of the struc-
tures to the energy (p,) and the entropy (p,log py).
In general, one finds that most of the information is
contained in a number P of leading modes, P being
much less than M. The remaining structures recon-
struct a signal that is indistinguishable from noise.

Notice, however, that the signal is highly non-
Gaussian and important information is contained
in the low energy tail of the retained P modes (see
below).

Because only a fraction of the ¢, ¥, structures is
sufficient to reconstruct the image, the bi-ortho-
gonal decomposition has a potential as a data com-
pression technique. For the compression to be ef-
fective the components of the first P eigenvectors
that are kept. together with their eigenvalues, must
have less bits than the whole image. If, in addition,
the eigenvectors vary little from image to image, in
a sequence of frames, it would be enough to trans-
mit the new eigenvalues together with a special
code indicating that the last transmitted set of
eigenvectors is to be used.

To carry out the bi-orthogonal decomposition
involves a larger amount of computation than an
expansion in a fixed basis as, for example, the
discrete cosine transform. Notice, however, that the
expansion in a basis generated by the data itself is
a shorter and more natural way to deal with the
data, whereas a collection of Fourier coefficients is
not particularly enlightning because in practice

Fig. 1. A woman and a baby.
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a sine wave does not look much like any image 624 x 624 matrix UU'is diagonalized and one
signal. : obtains an expansion as in Eq. (3.1) with M =
As an example consider a [624 x 800] pixel im- 624 modes. The normalized contributions of the

age U taking values in the range [0, 255] (Fig. 1). ¢ ¥, structures to the energy (p.) and to the
To carry out the bi-orthogonal decomposition the entropy (py logp,) are plotted in Fig. 2(a, b). The
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Fig. 2. (a) Normalized energy of the structures. (b) Normalized entropy of the structures.
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non-Gaussian nature of the signal is well apparent
from these plots. We find that one of the eigen-
values is much larger than the others. This means
that a large amount of the global energy is asso-
ciated with a small number of structures with the
largest eigenvalues. In this example 80% of the
global energy is associated with two structures. The
energy concentration in these structures does not
however relate to its information content. In Fig.
3 we show the image that corresponds to the two
structures with the largest energy. One sees that, as
far as the intelligibility of the picture is concerned,
the information associated with these structures is
very low, because it is not possible to recognize
anything important. These structures look like the
output of a low-pass filter. They characterize the
local average gray level throughout the picture, but
all information about details is elsewhere. This be-
comes clear in Fig. 4, where we show the image
obtained without the two largest eigenvalues, i.e.
with only 20% of the energy. Notice that the orig-
inal picture has gray level values between 0 and
255. However, after the diagonalisation, the com-
ponents of the structures @, ¥, take positive and

negative real values. For the graphical representa-
tion of the truncated images we have always shifted
and rescaled the gray level to make it lie in the
range [0, 255].

The effective dimension of the signal is the number
of structures needed to reconstruct the information
contained in the image. In Fig. 5(a, b) we show the
images formed with the 20 and 120 largest eigen-
values. Important contour information is still con-
tained in the (weak) eigenvectors between the 21st
and the 120th. However, the image formed by the
first 120 eigenvectors is virtually indistinguishable
from-the original image. Even for this image, which
contains many small details, one fourth of the struc-
tures is sufficient to reconstruct the image in an
accurate fashion. The normalized square error

¥ (ulx, y) —ilx, y)?

s Tul(x, y)

between the actual image and the sum of the first
120 modes is 0.427% and its energy is 99.9% of the
total energy. For the 20 modes picture of Fig. 5(a)
the energy 1s 98.8% and the NSE is 5.5%.

Fig. 3. Image of the two largest energy modes.
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Fig. 4. Image excluding the two largest energy modes.

Efficient signal processing should take into ac-
count the statistical structure of the signal. An
important point that comes up from the analysis of
this example, and is true in general for real world
images, is the non-Gaussian nature of the signal. It
is well known that gray level intensity histograms
of real world images are also non-Gaussian. The
bi-orthogonal decomposition is however more spe-
cific in pinning down the meaning of the several
parts of the spectrum, in particular the important
contour information contained in the small energy
components. This implies in particular that image
signals are very sensitive to noise. a subject we
discuss in more detail in the next section.

4. Noise and the bi-orthogonal decomposition

Using the bi-orthogonal decomposition the effect
of noise in an image becomes a problem of per-
turbation of linear operators. If noise is added to an
image u(x, y), the resulting signal

v(x, y) = u(x, y) + e(x, y) (4.1)

is associated, by (2.3a), to an operator
V=UH+é&. (4.2)

If e(x, y) is small compared with u(x, y), the oper-
ator & is a small perturbation added to U. There-
fore the bi-orthogonal decomposition of v(x, y) is
related to the one of u(x, y) by the usual techniques
for perturbations of linear operators [7]. According
to a well known criterion, the eigenvalues and
eigenvectors of the perturbed operators VV' and
V1V are regular functions of the parameter ¢ that
defines the size of the perturbation, if the following
condition holds

A =inf |af —ai_i| > |é], (4.3)
k

where |¢| = C sup, , |e(x, y)| for some positive con-
stant C. As long as (4.3) is fulfilled, no crossing of
eigenvalues occurs and the only modifications are
small deformations of the original eigenvectors and
eigenvalues of UU ™.

However, in a real image, |of — af_,| is very
small for large k. Therefore any small amount of
noise will modify the structures associated to the
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Fig. 5. (a) Image with the 20 largest eigenvectors. (b) Image with the 120 largest eigenvectors.
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small eigenvalues. As we have seen in Section 2
these are the structures that contain information
about contours and small details which, as a conse-
quence, are very sensitive to noise. Suppose, how-
ever, that to the image u(x, y) we associate a spec-
tral harmonic counterpart, defined by

P

i(x, y) = Z Ok Pr(x) Vil y), (4.4)

k=1
where now the parameter 6 is a linear function of k
0 = A — ik. (4.5)

With A4 = A(P + 1) (P being the number of modes
kept in the compressed image) one insures that
A=|0F —07_\|=4>0, the eigenvalues are
equally spaced and, in the sense of perturbations of
linear operators, i is maximally robust for small
noise perturbations.

We have tested this effect in the image studied in
Section 3 (Fig. 1), namely:
(1) We perform the bi-orthogonal decomposition

and compress the image to 120 modes
120

up(x.y) = Z ot P ()i ).

k=1

(2) Then we form the image 4, as in Eq. (4.4), 0}
being the linear function (4.5) with coefficients
chosen to preserve the same total energy, that is,

120 120

¥ af = ¥, 9. (4.6)
k=1 k=1

(3) The image i is corrupted by additive noise

vV=1+e.

>

The bi-orthogonal decomposition of the cor-
rupted image v(x, y) is obtained:

»
v, y) = Y 0kdi(x)Pi(y)
k=1

(5) Animage u’is reconstructed using the bi-ortho-
gonal modes of the corrupted image together
with the original eigenvalues

B
w(x,y) =Y odr(xWi(y).
k=1
For any given amount of channel noise compat-
ible with the perturbation argument sketched
above, the difference between the ;i }structures
and the original ones ¢, 1), is expected to be smaller

Fig. 6. Original image corrupted by Gaussian noise.
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(a)

Fig. 7. (a) Image reconstructed from the harmonic picture exposed to the same noise intensity. (b) Reconstructed image without the
first mode.
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when @ is used than when the original picture is Whereas in the original image the effect of the noise
corrupted directly by the same amount of noise. is an overall blurring of contours and details, in the
Likewise the order of the eigenvalues will, with modified @ image one seems to have mostly a shift
higher probability, be preserved. The results that in the modes leading to the appearance of faint
arc obtained have some interesting features. bands directed along the coordinate axis. By

0.45

0.4

0.25

0_2 I

0.05 b s menrroversransasnaa ;

0 0.01 0.02 0.03 0.04 0.05 0.06
T

Fig. 9. Fourier spectrum of the ¢, bi-orthogonal mode of textures.
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contrast the contours and intelligibility of small
details is not much affected.

According to Eq. (4.3), when the function of
is replaced by 07, preserving the same total energy,
nose-resistance will increase for the small modes
and will decrease for the large energy modes.

(a)

Hence, eliminating some of the large energy
modes the spurious bands should become weaker
without affecting the contours. These effects are
illustrated in Figs. 6 and 7(a, b). Fig. 6 shows the
original image corrupted by Gaussian additive
noise with energy equal to 10% of the image

Fig. 10. (a, b) Block entropy image for rextures.
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energy. Fig. 7(a) is the reconstructed image u’' for
the same amount of noise and Fig. 7(b) is «’ without
the first mode.

The control of noise effects, by the transforma-
tions discussed above, might be used for image
communications. The amount of computation

needed in the processing of an image using this
method, makes it unpractical for high rate trans-
mission, at the present time at least. Nevertheless
for remote transmission and when speed is not the
main issue, the proposed correction of the non-
Gaussian nature of the signal might still be useful.

Fig. 11. Textures image with two illumination levels.

Fig. 12. Block entropy image with two illumination levels.
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5. Texture segmentation by local bi-orthogonal
decomposition

Image segmentation is the partition of a plane
image into exclusive regions which, in some sense,
are homogeneous. When the purpose of segmenta-
tion is to distinguish some object from a back-
ground and the brightness of the object and the
background are significantly different, segmenta-
tion by gray level thresholding is a possibility. This
works well for example in automated manufactur-
ing processes if the assembly parts are kept dark
against a bright background but, in most images of
three-dimensional objects, different illumination
levels in different parts of the same object make
gray level thresholding a poor discriminating tech-
nique.

A more frequently used technique is edge
detection by convolution of the image with a
discrete difference operator, followed by a contour
filling algorithm to decide which pixels belong
to each one of the segmented regions. Edge detec-
tion also faces serious difficulties because factors
such as illumination may either hide physical

boundaries or, through shadows, cause brightness
discontinuities which are not related to any real
boundaries.

The reason why segmentation in computer vision
is such a difficult problem, as compared with the
ease with which the ‘eye plus brain’ system per-
forms this task, is because in the brain a huge
amount of information is stored concerning the
way the real world looks like. Then, based on a few
external stimuli, like brightness levels and a few
contours, the bulk of the segmentation process in
the brain is likely to be mostly an exercise in pat-
tern matching of the external stimuli with our
‘image of the world’ data basis. While our com-
puters are not equipped with a data basis of compa-
rable size and complexity as the brain, computers
must rely on a refinement in the analysis of the
external stimuli part of the process. This means that
quantitative characterizations of global and local
properties of the image must be developed. which
might even have to be finer and more accurate than
those performed by the human eye. Only then,
might we compensate for the weakness of the data
basis in computer vision.

Fig. 13. Bears.
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- The most difficult of all segmentation problems
occurs when different regions of the image cannot
be distinguished by gray level nor by sharp bound-
aries, but only by a difference in texture. Texture
refers to the local characteristics of the image. A
local gray level histogram is a local statistical
parameter. However, for the texture, what matters
most are the local spatial correlations between
pixel intensities. The brain will probably perform
the texture segmentation task by pattern matching
with its data basis of textures but, in the computer,
the only alternative is to attempt an objective
mathematical characterization of what texture
means. Several quantities have been proposed as
a measure of texture. For example the gray level
co-occurrence matrix [3, 4], the local autocorrela-
tion function [13], the autocorrelation spread
measures [2], the number of edges in a neighbor-
hood [13], the local Fourier spectrum [8, 12], the
moments of the gray-level histograms of small win-
dows and texture primitives together with grammar
rules to generate the patterns.

In this section we propose the idea that the
entropy associated to the bi-orthogonal decompo-
‘sition of local blocks is an appropriate tool to
characterize textures in an image. The method for

0.7

texture segmentation by local bi-orthogonal de-
composition (LBO) contains three steps:

(i) Identify the texture average scale. Compute
the Fourier transform of a few randomly chosen
lines and columns of the image. Then identify the
first peak in the spectrum after the peak around
zero (which corresponds to the average pixel inten-
sity and long-range slow variations). In typical im-
ages the first large peak away from zero is the
lowest texture frequency wr. A block size M x N is
then chosen where M and N correspond to the
average 1/wr along the lines and the columns. In-
stead of using the Fourier transform of a set of lines
and columns, we may use the Fourier transform of
one of the modes in a global bi-orthogonal de-
composition of the image. -

(i) Construct the entropy image. The image is
now divided into blocks of size M x N and the
bi-orthegonal entropy (Eq. (2.9)) of each block is
computed. Assigning to each block its entropy
value one obtains a block entropy image.

(iii) Segmentation from the entropy image. The
entropy image is smoothed by some standard algo-
rithm and contour tracing from the smoothed en-
tropy image completes the process of texture seg-
mentation by LBO.
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Fig. 14. Fourier spectrum of the ¢, bi-orthogonal mode of bears.
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The algorithm was-tested on the.synthetic image
shown in Fig. 8. This image has several textures
which were constructed in such a way that the local
(in 32 x.32 blocks) gray level average is everywhere
the same and no boundary lines exist separating the
different textures. In this sense this example pres-
ents a pure case of segmentation by textures.

The average texture scale was found by comput-
ing the Fourier transform of the eigenfunctions
¢, of the global bi-orthogonal decomposition.
Fig. 9 shows the spectrum of ¢,. A large peak may
be seen, that corresponds. to a block of dimension
32x 32 pixels. The image is then divided into
blocks of size 32 x 32 and the bi-orthogonal en-
tropy of each block is computed to obtain the block
entropy image. To obtain an entropy image with
better. resolution we might compute the entropy in
the neighbourhood of every pixel in the original
image. However, this procedure is time consuming.
It suffices to generate an entropy image using the
block entropy for only a smaller number of pixels in
the original image. Fig. 10(a, b) shows the entropy
image evaluated using 32 x 32 blocks separated by
8 pixels. In the entropy image, zones with different
textures are well separated by the entropy values.

0.06

This enables-us to use-a simple gradient algorithm
to find the contours, thus: pe:sformmg the texture
segmentation: -

If the loeal. entropy actually charactenses the
local textuse, it should not be too séasitive to illu-
mination levels'in the image. We have tested this
feature by changing the intensity in one half of our
test image (Fig: 11). The relative insensitivity of the-
block entropies o illumination levels is apparent
from the entropy:image shown in Fig. 12.

In the ‘puretextures’ example described above,
textyre segmentation. by local bi-orthogonal de-
composition:seems to work efficiently. In real world
images, however; we see some difficulties and lim-
itations of the method in particular when different
materials have the: same local correlations (same
texture) or when:there are many different texture
frequencies:cog. We show the results for a difficult
case in Figs. 13=16: The first difficulty occurs in the
choice of the block size. Different texture scales do
occur, hence there isno unique block size appropri-
ate for all texture features. Fig. 14 shows the spec-
trum of the global ¢, .eigenfunction of the ‘bears’
image. A largedimension is suggested for the domi-
nant block:size. This corresponds to large areas of
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Fig. 15. Fourier spectrum of the ¢s¢ bi-orthogonal mode of bears.
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Fig. 16. Block entropy image for bears.

the image (the water and the mountain) which
are not the main objects in the image. If other
eigenfunctions are used, other characteristic block
sizes are found, as shown in Fig. 15. The low block
sizes are associated to low energy levels but, in spite
of their small intensities, they are important to
define the details of the image, that is, the micro-
structures that define the texture. An entropy image
corresponding to a block size 16 x 16 is shown in
Fig. 16.

6. Conclusions

As shown in the preceding sections, the bi-ortho-
gonal decomposition, a technique specially adapted
to handle functions depending on two variables, is
an interesting tool for image processing. The main
weak point, standing on the way to practical ap-
plications, is the amount of computation needed to
process an image using this technique. The compu-
tation requirements involve mostly the diagonaliz-
ation of large matrices or the diagonalization of
many small ones. At least with the computing

power available at the present time, the technique is
probably not appropriate for high rate transmis-
sions, although it might be useful for off-line pro-
cessing or for low rate transmission under noisy
conditions.

After many years of exploration of clever tech-
niques to process images without much prior in-
formation, the image processing field is now mov-
ing in the direction of creation and use of a large
data basis of patterns, shapes and textures. Pattern
matching with such a large data basis will probably
be the coming future in image segmentation. Here
also the bi-orthogonal decomposition, with its in-
trinsic capabilities for the extraction of the typical
space correlations, might be useful in the definition
of a library of patterns for real world images.
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