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Abstract—Principal component analysis (PCA) algorithms use neural networks to extract the eigenvectors of the
correlation matrix from the data. However, if the process is non-Gaussian, PCA algorithms or their higher order
generalisations provide only incomplete or misleading information on the statistical properties of the data. To handle
such situations we propose neural network algorithms, with an hybrid (supervised and unsupervised) learning scheme,
which constructs the characteristic function of the probability distribution and the transition functions of the stochastic
process. lllustrative examples are presented, which include Cauchy and Lévy-type processes. © 1997 Elsevier Science

Ltd.
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1. INTRODUCTION

Let x; denote the output of node i in a neural network.
Hebbian learning (Hebb, 1949) is a type of unsupervised
learning where the neural network connection strengths
W;; are reinforced whenever the products xx; are large. If
Q is the correlation matrix

Q= (xax;) (D

and the Hebbian learning law is local, all the lines of the
connection matrix W;; will converge to the eigenvector of
Q with the largest eigenvalue. To obtain other eigen-
vector directions requires non-local laws (Sanger,
1989; Oja, 1989, 1992; Dente & Vilela Mendes, 1996).
These principal component analysis (PCA) algorithms
find the characteristic directions of the correlation
matrix Q. If the data has zero mean ( < x; > = 0)
they are the orthogonal directions along which the data
has maximum variance. If the data is Gaussian in each
channel, it is distributed as a hyperellipsoid and the cor-
relation matrix Q already contains all information about
the statistical properties. This is because higher order
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moments of the data may be obtained from the second
order moments. However, if the data is non-Gaussian, the
PCA analysis is not complete and higher order correla-
tions are needed to characterise the statistical properties.
This led some authors (Softky & Kammen, 1991; Taylor
& Coombes, 1993) to propose networks with higher
order neurons to obtain the higher order statistical corre-
lations of the data. An higher order neuron is one that is
capable of accepting, in each of its input lines, data from
two or more channels at once. There is then a set of
adjustable strengths Wj; , Wy, ,..., W ;, n being the
order of the neuron. Networks with higher order neurons
have interesting applications, for example in fitting data
to a high dimensional hypersurface. However there is a
basic weakness in the characterisation of the statistical
properties of non-Gaussian data by higher order
moments. Existence of the moments of a distribution
function depends on the behaviour of this function at
infinity and it frequently happens that a distribution has
moments up to a certain order, but no higher ones. A
well-behaved probability distribution might even have
no moments of order higher than one (the mean). In
addition a sequence of moments does not necessarily
determine a probability distribution function uniquely
(Lukacs, 1970). Two different distributions may have
the same set of moments. Therefore, for non-Gaussian
data, the PCA algorithms or higher order generalisations
may lead to misleading results.
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FIGURE 1. A two-dimensional test signal.

As an example consider the two-dimensional signal
shown in Figure 1. Figure 2 shows the evolution of the
connection strengths W, and W, when this signal is
passed through a typical PCA algorithm. Large oscilla-
tions appear and finally the algorithm overflows. Smaller
learning rates do not introduce qualitative modifications
in this evolution. The values may at times appear to
stabilise, but large spikes do occur. The reason for this
behaviour is that the seemingly harmless data in Figure 1
is generated by a linear combination of a Gaussian with
the following distribution

po) =K@ +2%)" 2

which has first moment, but no moments of higher order.

To be concerned with non-Gaussian processes is not a
pure academic exercise because, in many applications,
adequate tools are needed to analyse such processes. For
example, processes without higher order moments, in
particular those associated with Lévy statistics, are
prominent in complex processes such as relaxation in
glassy materials, chaotic phase diffusion in Josephson
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FIGURE 2. Evolution of the connection strengths W,, and W, in
a PCA network for the data in Figure 1.
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junctions and turbulent diffusion (Shlesinger et al.,
1993; Zumofen & Klafter, 1993, 1994).

Moments of an arbitrary probability distribution may
not exist. However, because every bounded and measur-
able function is integrable with respect to any distribu-
tion, the existence of the characteristic function fle) is
always assured (Lukacs, 1970).

fla)y= Jei“'xdF(x) = () )

where o and x are N-dimensional vectors, X is the data
vector and F(x) its distribution function.

The characteristic function is a compact and complete
characterisation of the probability distribution of the
signal. If, in addition, one wishes to describe the time
correlations of the stochastic process x(f), the corre-
sponding quantity is the characteristic functional (Hida,
1980)

F(¢)= Je"‘" Ddu(x) A3)

where £(7) is a smooth function and the scalar product is

5= | arxt00 @

where u(x) is the probability measure over the sample
paths of the process.

In the following we develop an algorithm to compute
the characteristic function from the data, by a learning
process. The main idea is that in the end of the learning
process we should have a neural network which is a
representation of the characteristic function. This net-
work is then available to provide all the required infor-
mation on the probability distribution of the data being
analysed. To obtain full information on the stochastic
process, a similar algorithm might be used to construct
the characteristic functional. However this turns out to be
computationally very demanding. Instead we develop a
network to learn the transition function and from this the
process may be characterised.

2. LEARNING THE CHARACTERISTIC
FUNCTION

Suppose we want to learn the characteristic function f{o)
(eqn (2)) of a one-dimensional signal x(f) in a domain
o € [ag, ay]. The a-domain is divided into N intervals
by a sequence of valuesago ary...cy and a network is
constructed with N + 1 intermediate layer nodes and
an output node (Figure 3).

The learning parameters in the network are the con-
nection strengths Wy, and the node parameters 6;. The
existence of the node parameter means that the output
of a node in the intermediate layer is 8,x (o), x; being a
non-linear function. The use of both connection strengths
and node parameters in neural networks makes them
equivalent to a wide range of other connectionist systems
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FIGURE 3. Network to learn the characteristic function of a scalar
process.

(Doyne Farmer, 1990) and improves their performance in
standard applications (Dente & Vilela Mendes, 1996).
The learning laws for the network of Figure 3 are:

0;(t + 1) =8,(t) + y(cos ox(t) — 6,(1)) &)

Woit + 1) =Wy(t) +1
X D 180~ D Wol®xila)be(®)
7 k

X 0,()x (o).

7.1 > 0. The intermediate layer nodes are equipped with
a radial basis function

e (@ o)’ 120?

N
Z o~ (@— )2
k=0

where in general we use o; = o for all i. The output is a
simple additive node.

The learning constant 4 should be sufficiently small to
insure that the learning time is much larger than the
characteristic times of the data x(r). If this condition is
satisfied each node parameter @; tends to < cos a; x >,
the real part of the characteristic function fla) for « = «;.

The Wy, learning law was chosen to minimise the error
function

2
1
fW)= 3 Z (0,' - Z WOka(aj)ok) . )]
' %

J

xi(o)= (6)

One sees that the learning scheme is an hybrid one, in the

FIGURE 4. Network to learn the characteristic function of a two-
dimensional signal x(1).

1467

sense that the node parameter 6; learns, in an unsuper-
vised way, (the real part of) the characteristic function
Aa;) and then, by a supervised learning scheme, the Wy,’s
are adjusted to reproduce the §; value in the output when-
ever the input is «; Through the learning law (5) each
node parameter §; converges to < cos a; x > and the
interpolating nature of the radial basis functions guaran-
tees that, after training, the network will approximate
the real part of the characteristic function for any « in
the domain [og,an].

A similar network is constructed for the imaginary part
of the characteristic function, where now

0:(t + 1) =0;(t) + v(sin a;x(¢) — 0,(1)). ®)

For higher dimensional data the scheme is similar. The
number of required nodes is N for a d-dimensional data
vector x(¢). For example, for the two-dimensional data of
Figure 1 we have used a set of N nodes (Figure 4).

Each node in the square lattice has two inputs for the
two components o and «, of the vector argument of
f(@). The learning laws are, as before

+17 Z Ok (1) — Z Woimny X onn) (@it )8 mny (1)
(k1) (mn)
X 0 (DX (@)

The pair (ij) denotes the position of the node in the square
lattice and the radial basis function is

FIGURE 5. (a) Real part of the characteristic function for the data
in Figure 1 (left) and the mesh of 4, values (right) obtained by the
network. (b) Imaginary part of the characteristic function for the
data in Figure 1 (left) and the mesh of ¢, values (right) obtained by
the network.
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Xap(@) = (10)

o0~ Pro’

(k)

Two networks are used, one for the real part of the
characteristic function, another for the imaginary part
with, in eqn (9) cos (&;-X(¢)) replaced by sin () -X(7)).

Figure 5(a,b) shows the values computed by our algo-
rithm for the real and imaginary parts of the character-
istic function corresponding to the two-dimensional
signal in Figure 1. On the left is a plot of the exact
characteristic function and on the right the values learned
by the network. In this case we show only the mesh
corresponding to the @; values. One obtains a 2.0%
accuracy for the real part and 4.5% accuracy for the
imaginary part.

The convergence of the learning process is fast and the
approximation is reasonably good. Notice in particular
the slope discontinuity at the origin which reveals the
non-existence of a second moment. The parameters
used for the learning laws in this example were y =
0.00036, n = 1.8, ¢ = 0.25. The number of points in
the training set is 25,000.

For a second example the data was generated by a
Weierstrass random walk with probability distribution

1« (2}
P(x)=gz(§> (80 + 65, —v) (1

j=0

and b = 1.31, which is a process of the Lévy flight type.
The characteristic function, obtained by the network, is
shown in Figure 6. Taking the log( — log) of the network
output one obtains the scaling exponent 1.49 near o = 0,
close to the expected fractal dimension of the random
walk path (1.5). The parameters used for the learning
laws in this example were ¥ = 0.0005, n = 1.75, 0 =
0.1732. The number of points in the training set is
80,000.

These examples test the algorithm as a process identi-
fier, in the sense that, after the learning process, the net-
work is a dynamical representation of the characteristic
function and may be used to perform all kinds of analysis
of the statistics of the data.

There are other ways to obtain the characteristic func-
tion of a probability distribution, which may be found in
the statistical inference literature (Prakasa Rao, 1987).
Our purpose in developing neural-like algorithms for
this purpose was both to have a device that, after learn-
ing, is quick to evaluate and, at the same time, adjusts
itself easily, through continuous learning, to changing
statistics. As the PCA algorithms that extract the full
correlation matrix, our neural algorithm laws are also
non-local. As a computation algorithm this is not a
serious issue, but for hardware implementations it
might raise some problems.

J. A. Dente and R. Vilela Mendes
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FIGURE 6. (a) Characteristic function for the Weierstrass random
walk (b = 1.31). Log( — log) of the characteristic function f(a) for
the Weierstrass random walk (b = 1.31).

3. IDENTIFICATION OF STOCHASTIC
PROCESSES

As we have stated before the full characterisation of the
time structure of a stochastic process requires the knowl-
edge of its characteristic functional (eqn (3)) for a dense
set of functions £(¢).

To construct an approximation to the characteristic
functional we might discretise the time {tn =nAt} and
the inner product in the exponential becomes a sum over
the process sampled at a sequence of times.

< iy x(rk)s(rk>>
F(§)=(e * . (12)

The problem would then be reduced to the construction
of a multidimensional characteristic function as in
Section 2. In practice we would have to limit the time-
depth of the functional to a maximum of T time steps,
TAt being the maximum time delay over which time
correlations may be obtained. If N is the number of
different £ values for each &, the algorithm developed
in Section 2 requires N7 nodes in the intermediate layer
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and, for any reasonably large T, this method becomes
computationally explosive.

An alternative and computationally simpler method
consist in, restricting ourselves to Markov processes, to
characterise the process by the construction of networks
to represent the transition function for fixed time inter-
vals. From these networks the differential Chapman-
Kolmogorov equation may then be reconstructed.

Let x(#) be a one-dimension Markov process and
p(xy, t + Atlx,, 1) its transition function that is, the condi-
tional probability of finding the value x, at time ¢ + Az
given x; at time ¢. Assume further that the process is
stationary

p(xa, t+ Atlxy, ) = p(x,, Atlx,). (13)

The network that configures itself to represent this func-
tion is similar to the one we used for the two-dimensional
characteristic function. It is sketched in Figure 7(a,b). It
has a set of N? intermediate layer nodes with node para-
meters, the node with coordinates ?c(,-j) corresponding to
the arguments (x, (if) = xq + iAx, x,(ij) = xy +jAx) in the
transition function. The domain of both arguments is
(x0, xo + NAx). For each pair {x, =x(¢ + A?), x; =x(1)}
in the data set, the node parameters that are updated are
those in the four columns containing the nearest neigh-
bours of the point x = {x,,x,} (Figure 7b).
The learning rule is

oy — [ F e
Ng)(xHe @
NG GES W R
Z Nup(X)e ™ T
0t +1)= Sk.l(H D (14)
J
T)(,-j)(})e - |}—3:(,»,-)|2/a
S+ )=S0+ > (15)

- I - 2
i Z T,(kl)(x)e |x X(H)I la
kl

where n,-j(}) =1 if (§j) is one of the nearest neighbours of
the data point and zero otherwise. « is a neighbourhood
smoothing factor. S(#) is a column normalisation factor.
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FIGURE 7. (a) Network that learns the transition function
pOxG, Atlxy) of a stationary Markov process; (b) Nearest neigh-
bours of the data point x = (x(t + At), x(1)).
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FIGURE 8. Typical sample path of a stationary Markov process.

In the limit of large learning times the node parameters
approach the transition function

0(11) s p(xo + le, Atle =JAX) (16)

As for the networks in Section 2, the intermediate layer
nodes are equipped with a radial basis function [eqn (10)]
and the connection strengths in the output additive node
have a learning law identical to the second equation in
eqn (9). The role of this part of the network is, as before,
to obtain an interpolating effect.

What the algorithm of eqns (14) and (15) does is to
compute recursively the average number of transitions
between points in the configuration space of the process.
The spatial smoothing effect of the algorithm auto-
matically insures a good representation of a continuous
function from a finite data set. Furthermore its recursive
nature would be appropriate for the case of drifting
statistics.

For a stationary process, once the learning process has
been achieved and if At is chosen to be sufficiently small,
the network itself may be used to simulate the stationary
Markov process. A complete characterisation of the
process may also be obtained by training a few similar
networks for different (small) At values and computing
the coefficient functions in the differential Chapman-
Kolmogorov equation (Gardiner, 1983).

a) b)

FIGURE 9. Transition functions obtained for (a) t = 3AT and (b)
t=AT.
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FIGURE 10. Transition function p(x, ATI0,0) (a) and p(x,3A710,0)
(b).
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The coefficients are obtained from the transition prob-
abilities, noticing that for all € > 0.

lim p(z, 1+ AL, YAt = WG, forli —Z =€ (18)
1—

dx(x; — z)p(i, t + AtlZ, 1) = A2, 1) + O(e)
(19)

lim — J
Ar—0 At J Ik —Zl<e

.1 o -
}1’30 Y. JG_Zi<de(xi — z)(x; — z))p(%, 1 + AtlZ, 1)

= ByG1)+0(). (20)

(a)
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FIGURE 12. Diffusion function for AT{0), 2AT{ + ) and 3AT(*).

W(Z, 1) is the jumping kemnel, A;(Z,#) the drift and
B;(Z, 1) the diffusion coefficient.

As an example we have considered a Markov process
with jumping, drift and diffusion. A typical sample path
is shown in Figure 8. Three networks were trained on this
process, to learn the transition function for ¢ = AT, 2AT
and 3AT (AT = 0.374 ms). Figure 9 shows the transition
function for ¢+ = AT and 3AT. Figure 10 shows two
sections of the transition function for x; = 0, that is
p(x, AT10,0) and p(x, 3AT0,0).

The networks were then used to extract the coefficient
functions A(x, 1), B(x,t) and W(xlz,1). To find the drift
A(x,1) we use eqn (19). Figure 11 shows the computed
drift function and a least square linear fit. Also shown is a
comparison with the exact drift function of the process.

To obtain the diffusion coefficient B(x,z) we use
eqn (20). Figure 12 shows the diffusion coefficient for
different AT values. AT is the smallest time step used in
the process simulation. Therefore B(x,t)= 2.6 is our
estimate for the diffusion coefficient. In this case,
because the diffusion coefficient is found to be a con-
stant, the value of the jumping kernel W(xlz, 1) is easily
obtained by integration around the local maxima X, of

55 . N

50 . -
0.5 0.1 005 0 005 0.1 0.15

(b)

FIGURE 11. (a) Computed drift function and linear least square fit; (b) exact drift function of the process (1), least square linear fits for

(2) t=ATand (3) t = 2AT.
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plx, ATlz) with |x —zl > 0.2.

1 X, + 8
W= AT xm_bp(x, AT\z)dx 6=0.2. 2D
We conclude W(x,z) =~ 3005(Ix — zl — 0.5). The para-
meters used for the learning laws in this example were
n = 0.48, = 0.00021. The number of points in the
training set is 1,000,000.
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