Boundary-Layer Control by Electric
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1 Boundary Layers and Boundary Layer Control

In turbulent boundary layers, near-wall streamwise vortices
are responsible for the high skin friction drag. Therefore, most
recent attempts (Sirovich and Karlsson, 1997, Lee, et al., 1997)
to reduce the skin friction drag concentrate on the control of
the interactions between the vortices and the wall. However,
because of the very large ratio between laminar and turbulent
skin friction drag, it also makes sense to devote some effort
to delay the transition. The control techniques that have been
proposed include suction of slow-moving fluid through slots or
a porous surface, use of compliant walls and wall cooling (or
wall heating for liquids). Another class of techniques for bound-
ary-layer control consists in acting on the flow by means of
electromagnetic forces. Here different techniques should be en-
visaged according to whether the fluid is weakly conducting
(an electrolyte like seawater or an ionized gas) or a good con-
ductor (like a liquid metal). Proposals for boundary-layer con-
trol by electromagnetic forces trace its origin to the papers of
Gailitis and Lielausis (1961), Tsinober and Shtern (1967), and
Moffat ( 1967). Interest in these techniques has revived in recent
years and some more accurate calculations and experimental
verifications have been carried out, mostly in the context of
electrolyte fluids (Tsinober, 1990; Henoch and Stace, 1995).

In this note we are concerned with the flow of air along an
airfoil when a layer of ionized gas is created on the boundary-
layer region. Local ionization of the air along the airfoil not
being practical from the technological point of view, we will
assume that a stream of ionized air (or other ionized gas) is
injected through a backwards facing slot placed slightly behind
the stagnation point (Fig. 1). The body force that we consider
to be acting in the ionized fluid is a streamwise electric field
created by a series of plate electrodes transversal to the flow
on the airfoil surface.

In addition to numerical calculations, we obtain scaling solu-
tions and analytical design formulas. Here we simply report the
main results. More detail may be obtained from a full report
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Fig.1 Airfoil transversal cut showing ionized air injection, suction pump
and plate electrodes

available as an electronic preprint [ physics/9705020 at xxx.lan-
l.gov]. The conclusion is that, by itself or in conjunction with
other methods, this technique may be useful in delaying the
transition.

2 Ionized Boundary Layers With Electric Fields

The Boundary-Layer Equations. We use orthogonal cur-
vilinear coordinates, with £ parallel to the surface along the
flow, # normal to the surface and assume that k6 is small (x
being the curvature and 6 the boundary layer thickness). Trans-
lational symmetry along the spanwise Z-direction is assumed.
Denote by if and ¥ the components of the fluid velocity along
the £ and ¥ directions. p,, is the mass density, &, the electric
charge density and E an applied electric field. The tilde denotes
quantities in physical dimensions to be distinguished from the
adimensional quantities defined below. Consider typical refer-
ence values L,, 6,, U,, p,, v,. o,, E, for the airfoil width,
the boundary layer thickness, the fluid velocity, the fluid mass
density, the kinematic viscosity, the fluid charge density and
the electric field. Then we define the adimensional quantities

o 2 ¥
t=fi=—=, x==, y==,
S ot g
i ﬁLr ‘m
uza’ U=U,6, pftl_‘p'T
ﬁ UFLJ'
= A R = 3
BTl BT
gl gl Bk (1)
v, a, E,

In general, R, > 1. We neglect terms of order 1/R, and
§2/L? and also notice that the y-component of the electric field
is suppressed by the factor 6,/L,.

Defining u, = u (y = ), a stream function r and a change of
variables

Transactions of the ASME



¥ = (uvw)' PE(x)f(x,n)  (2)

_(&)IIE_L
T=\w) e
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dy and v = —(9y/dx), we obtain, for stationary solutions
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Scaling Solutions. With plate electrodes transversal to the

fluid flow the mean electric field in the x-direction may be
parametrized by

(4)

E, = g(x)/1(x) is the field at y = 0 and I(x) is of the order of
the electrode spacing. For thin boundary layers the field E, may
with good approximation be considered to be independent of y
throughout the boundary layer thickness. Ionized gas is injected
through a slot near the leading edge of the airfoil, being then
carried along the airfoil surface by the flow. The steady-state
charge distribution in the boundary layer is obtained from the
continuity equation

a(x,y)=oo(1 —dip(x,y))0(1 — dup(x,y))8(x — x0)  (5)

where o, is the injection intensity, d, the rate of depletion,
the stream function and x, the coordinate of the injection slot.
The dynamically-dependent charge density profile may also be
parametrized by the simpler formula

o(x,y) = cru(l - 1) (6)

u,

A scaling solution is one for which fis a function of 1 only.
Equation (3) becomes
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with boundary conditions f(0) = f'(0) = 0, f'(*) = 1. We
have denoted f' = 8f/8n and & = 9¢/Ax. With the pressure
approximately constant for length scales L of the order of the
airfoil du,/dx =~ 0. The factorized nature of Eq. (7) implies
that solutions exist only if
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There are two interesting situations. The one with ¢; = 0 ¢; =
0 and the one with ¢; = 0 ¢, = 0. The first one corresponds to
a boundary layer starting at x = 0 and growing with x'* and
the second to a constant thickness boundary layer. In the first
case one chooses ¢; = 0 to obtain a boundary layer starting at
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Fig. 2 Effective boundary layer thickness 6* (f'(5*) = u/u. = 0.85) for
the constant thickness scaling solution

= (. The scaling hypothesis requires then an electric field
that is singular at x = 0, y = 0 (E, ~ x'). In any case this
electric field solution is not very interesting for our purposes
because it leads to a boundary layer growth of x'”*, as in the
free force Blasius solution. In the second case the equation is

a
2

e i (10)
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withe, =0, # 0, a = yo-oc3x[c_4fu,ﬁp,,,vw. b = Vu,cilvw.
With the replacement ¢(n) = 1 — f'(n) and choosing c; =
vw/lu,, which is a simple rescaling of &, Eq. (10) becomes
the zero-eigenvalue problem for a Schridinger equation in the
potential a/(1 + n*). Using the WKB approximation we obtain
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which is a very good approximation to the exact solution for a
= 1. Figure 2 shows the effective boundary layer thickness as
a function of a. The effective boundary-layer thickness 6* is
defined here as the value of n at which the velocity u reaches
0.95 of its asymptotic value u,. A very fast thinning of the
boundary layer is obtained (several orders of magnitude) for a
relatively short range of the a parameter. Figure 2 shows the
variation of &* for small a. For large a (and small 6*) one has
the asymptotic formula

(11)
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If the longitudinal electric field E, is assumed to be a constant
(E,) throughout the boundary-layer thickness, with the same
charge profile, the solution is even simpler, namely

flim=1—e™

with £ = Ve, and h = yc,00Eo! B2 pn.
For reference values of the physical quantities in Egs. (1)
we take

(12)

U =100ms™", L =1m,
6,=10"m, p,=12Kgm™
E, =500Vem™', o,=15uCcm™,

v,=15%x 107 m’s™! (13)

For these reference values, the adimensional constants w and y
are w = 0.15 and y = 62.499.
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Fig. 3 Contour plot of f'(x, 5) for § = 0.6

Let y* be the point at which u/u, = 0.95. If stability of a
laminar boundary layer cannot safely be guaranteed for local
Reynold numbers R = ,7%/ ¥ greater than about 10*, we obtain
for the classical force-free Blasius solution, and these reference
parameters, that ¥* = 0.15 mm and, without control, the laminar
region would be of the order of 1 cm, a tiny portion of a typical
wing.

From the scaling solutions we may obtain an estimate of the
controlling effect of a streamwise electric field on the boundary
layer profile. The result is that a constant thickness boundary
layer with local Reynolds number Ry = 107 is obtained for a
charge density, in physical units, equal to &, = o40, = 14.36
pC ecm™,

The above estimate is obtained using the reference values for
the kinematic variables. For other values we have the following
designing formula (in normalized units)

3
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(14)
For design purposes, another important estimate concerns the
total current [ of the injected ionized gas, which determines the
required ionization power. Integrating (6) over the boundary
layer one obtains

3
Tl ol

I =0.03675L (15)

0
with the current in physical MKS units and all terms in the
right-hand side being adimensional quantities normalized by the
reference values.

3 Numerical Results

For the numerical solution of Eq. (3), with o given by Eq.
(6), we use an implicit finite-difference technique (Blottner,
1970; Davis, 1970; Hamilton et al., 1992). The electric field is
parametrized as in Eq. (4), namely

l?
E\' = EO !2 i
" 4 £2(x)n?
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with u,l*/w = 666.66 which corresponds to = 10, u, = 1 and
vw = 0.15. For these parameters the electric field has only a
small variation throughout the boundary layer region. For the
scaling function we take £(x) = Vx. Then all results depend
only on the variable §
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(S = 1 when all quantities take the reference values). In Fig.
3 we show a contour plot of the numerical solution forf'(x,n)
(=u/u.) when S = 0.6. From the x-dependence of the numerical
solutions we may compute the effect of the electric field in
extending the laminar part of the boundary layer. By defining,
as in Section 2, the length of the laminar part as the x-coordinate
corresponding to a local Reynolds number of 10* and denoting
by xo («/u, = 0.95) the force-free value we have obtained for
the ratio R = x/x, the results shown in Fig. 4. For § = 0 we
obtain the Blasius solution and as we approach § = 0.957,
corresponding to the scaling solution, the ratio diverges. The
matching of the results in the force-free and scaling limits is a
good check of the numerical algorithm. A clear indication of
the results in Fig. 4 is that not much improvement is obtained
unless one is able to obtain ionization charge densities of the
order of the reference value o,.

4 Remarks

1 In this paper we have concentrated on controlling the
profile of the boundary layer. The profile has a direct effect on
the laminar or turbulent nature of the flow which, in a simplified
manner, we estimated by a local Reynolds number Ry = i7, v/
v) defined as a function of the effective thickness 7*. Another
relevant aspect, of course, is the active control of the transition
instabilities that can be achieved by electromagnetic body forces
on the charged fluid. A simplified treatment of the Tollmien-
Schlichting fluctuations leads to the conclusion that a space-
time modulation of the electric ficld, with the appropriate phase,
is equivalent to an effective viscous damping effect which de-
lays the growth of the transition region instability. For this to
be effective one needs to detect the phase of the wave instabilit-
ies by electromagnetic probes. Absolute synchronization of the
feedback electric modulation is, however, not so critical as in
acoustic noise cancelation, because here the objective is only
to obtain an effective damping effect. The effective damping
gives an intuitive understanding of why a feedback electric
modulation might work. A more rigorous treatment requires
the solution of an integro-differential eigenvalue problem. For
details refer to Vilela Mendes ( 1997).

2 Because of the perturbation induced by the injection
method, it seems advisable to use this method in conjunction
with suction and passive control in the rear part of the airfoil.

161 / g

Fig. 4 Ratio of boundary layer laminar regions with and without electric
field control
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Even if a fully laminar boundary layer may never be completely
achieved, any small improvement will become, in the long run,
quite significant in terms of fuel consumption.
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