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Abstract. I prove that every finite-dimensional Poisson manifold X admits a canonical
deformation quantization. Informally, it means that the set of equivalence classes of asso-
ciative algebras close to the algebra of functions on X is in one-to-one correspondence with the
set of equivalence classes of Poisson structures on X modulo diffeomorphisms. In fact, a more
general statement is proven (the ‘Formality conjecture’), relating the Lie superalgebra of
polyvector fields on X and the Hochschild complex of the algebra of functions on X. Coef-
ficients in explicit formulas for the deformed product can be interpreted as correlators in a
topological open string theory, although I do not explicitly use the language of functional
integrals.
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Foreword

Here is the final version of the e-print ‘Deformation quantization of Poisson man-
ifolds I’ [34] posted on the web archive as q-alg/9709040. The changes that have
been made are mostly cosmetic, I have just corrected few mistakes and tried to make
clear links between several lemmas and theorems proven in the Letter, and also
straightened out some proofs.

Here follows a guide to a short and definitely not complete additional biblio-
graphy reflecting further development of the subject.

First of all, I have to mention the work of Dmitry Tamarkin (see [45] and a nice
exposition in [23]), which gave a radically new approach to the formality theorem.
One of main ideas is to consider the Lie algebras T},o1y and Dpey not just as dg Lie
algebras, but as homotopy Gerstenhaber algebras, which naturally explains the cup
product on the tangent space. A very important related issue here is the so-called
Deligne conjecture which says that on the Hochschild complex of an arbitrary
associative algebra there is a natural action of the dg operad of chains of the little
discs operad. The Deligne conjecture has now several proofs (see, e.g., [37, 38]), and a
generalization to higher dimensions in [27]. Unfortunately, up to now, it is not clear
how to extract explicit formulas from Tamarkin’s work, or even how to compare it
with the formality morphism from [34]. Tamarkin’s proof is based on the Etingof-
Kazhdan theorem about quantizations of Lie bialgebras, which is, in a sense, more
complicated (and less explicit) than the Formality theorem itself! It seems that the
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Etingof-Kazhdan theorem is a ‘degree zero’ part of a more general not yet established
result of the formality of the differential graded Lie algebra controlling deformations
of the symmetric algebra Sym(7’) of a vector space, considered as an associative and
coassociative bialgebra. On this Lie algebra there should be an action of the operad of
chains of little three-dimensional cube operad and its formality should be considered
as a natural generalization of the Formality theorem from [34]. Up to now there is no
explicit complex of a ‘reasonable size’, controlling deformations of bialgebras, see [40]
for some recent attempts. We should notice also that Tamarkin deduced (see [46]) the
Etingof-Kazhdan theorem from Deligne’s conjecture and the formality of the little
discs operad. Unfortunately some elements of his proof are too formal and it is not
clear how to translate them into geometry.

In [35] T have tried to perform a shortcut in Tamarkin’s proof avoiding the ref-
erence to Etingof—Kazhdan’s result. Also I proposed a new formality morphism with
complex coefficients, different from the one in [34]. Conjecturally, the new morphism
behaves in a better way than the old one with respect to the arithmetic nature of the
coefficients (weights of graphs) and should coincide with Tamarkin’s quasi-iso-
morphism up to homotopy.

In [47] another generalization of the Formality theorem was proposed. Namely,
one should consider not only the cohomological Hochschild complex, but also the
homological Hochschild complex which is a module in certain sense over the
cohomological one. The related colored operad here consists of configurations of
disjoint discs in a cylinder with two marked points on both boundary components.
This is important for the study of traces in deformation quantization, see [16] for an
approach to the quantization with traces.

In [2] the reader can find an explicit description of the signs of various terms in the
Formality theorem, which is quite a nontrivial issue.

The program of identifying graphs in the formality morphism with Feynman dia-
grams for a topological sigma model (announced in [34]) was performed by Alberto
S. Cattaneo and Giovanni Felder in a series of papers [8, 9].

In [5], a formality of the dg Lie algebra is established which is a global Dol-
beault complex for holomorphic polyvector fields on a given Calabi—Yau manifold
X. Morally, together with the Formality theorem of [34], this should mean that
the extended moduli space of triangulated categories is smooth in a formal neigh-
borhood of the derived category of coherent sheaves on X.

An alternative way for the passage from the local to global case in the Formality
theorem was described in [10], (see also an appendix in [36]).

In [36], I proposed a way to use the results of [34] in the case of algebraic varieties.
It seems that for rational Poisson varieties, deformation quantization is truly
canonical in a very strong sense. For example, I believe that for arbitrary field k
of characteristic zero there exists a certain canonical isomorphism between the
automorphism group of the k-algebra of polynomial differential operators on
an affine n-dimensional space over k and the group of polynomial symplectomor-
phisms of the standard symplectic 2n-dimensional affine space over k. This is very
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surprising because the corresponding Lie algebras of derivations are not at all
isomorphic.

Finally, repeating myself a bit, I comment on today’s state of the topics listed in
Section 0.2 in [34]:

(1) The comparison with other deformation schemes is not yet performed.

(2) This is still a wishful thinking.

(3) See conjectures in [35], and also [36].

(4) This is not done yet and results from [5] should be used as an intermediate step.

(5) Done by Cattaneo and Felder.

(6) Not yet completed, see conjectures in [47].

(7) In [36] there is a recipe for a canonical quantization for quadratic brackets, see
also the new conjecture from above about an isomorphism between two auto-
morphisms groups.

0. Introduction

In this Letter it is proven that any finite-dimensional Poisson manifold can be
canonically quantized (in the sense of deformation quantization). Informally, it means
that the set of equivalence classes of associative algebras close to algebras of functions
on manifolds is in one-to-one correspondence with the set of equivalence classes of
Poisson manifolds modulo diffeomorphisms. This is a corollary of a more general
statement, which I proposed around 1993-1994 (the Formality conjecture, see[31, 44]).

For a long time the Formality conjecture resisted all approaches. The solution
presented here uses, in an essential way, ideas of string theory. Our formulas can be
viewed as a perturbation series for a topological two-dimensional quantum field
theory coupled with gravity.

0.1. CONTENT OF THE LETTER

Section 1: an elementary introduction to the deformation quantization and precise
formulation of the main statement concerning Poisson manifolds.

Section 2: an explicit formula for the deformation quantization written in coor-
dinates.

Section 3: an introduction to the deformation theory in general, in terms of dif-
ferential graded Lie algebras. The material of this section is basically standard.

Section 4: a geometric reformulation of the theory introduced in the previous
section, in terms of odd vector fields on formal supermanifolds. In particular, we
introduce convenient notions of an L..,-morphism and of a quasi-isomorphism,
which gives us a tool to identify deformation theories related with two differential
graded Lie algebras. Also in this section we state our main result, which is the
existence of a quasi-isomorphism between the Hochschild complex of the algebra of
polynomials and the graded Lie algebra of polyvector fields on affine space.

Section 5: tools for the explicit construction of the quasi-isomorphism mentioned
above. We define compactified configuration spaces related to the Lobachevsky
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plane, a class of admissible graphs, differential polynomials on polyvector fields
related with graphs, and integrals over configuration spaces. Technically, the same
constructions were used in generalizations of the perturbative Chern—Simons theory
several years ago (see [30]). Compactifications of the configuration spaces are close
relatives of Fulton—-MacPherson compactifications of configuration spaces in
algebraic geometry (see [17]).

Section 6: it is proven that the machinery introduced in the previous section gives a
quasi-isomorphism and establishes the Formality conjecture for affine spaces. The
proof is essentially an application of the Stokes formula, and a general result of
vanishing of certain integral associated with a collection of rational functions on a
complex algebraic variety.

Section 7: results of Section 6 are extended to the case of general manifolds. In
order to do this, we recall basic ideas of formal geometry of Gelfand and Kazhdan,
and the language of superconnections. In order to pass from the affine space to
general manifolds, we have to find a nonlinear cocycle of the Lie algebra of formal
vector fields. It turns out that such a cocycle can be almost directly constructed from
our explicit formulas. In the course of the proof, we calculate several integrals and
check their vanishing. Also, we introduce a general notion of direct image for certain
bundles of supermanifolds.

Section 8: we describe an additional structure present in the deformation theory of
associative algebras, the cup product on the tangent bundle to the super moduli space.
The isomorphism constructed in Sections 6 and 7 is compatible with this structure.
One of new results is the validity of Duflo—Kirillov formulas for Lie algebras in
general rigid tensor categories, in particular for Lie superalgebras. Another appli-
cation is an equality of two cup products in the context of algebraic geometry.

0.2. WHAT IS NOT HERE

Here is a list of further topics which are not touched in this Letter, but are worth
mentioning:

(1) the comparison of the formality with various other known constructions of star-
products, the most notorious one are by De Wilde and Lecomte and by Fedosov
for the case of symplectic manifolds (see [12, 15]), and by Etingof and Kazhdan
for Poisson—Lie groups (see [14]),

(2) a reformulation of the Formality conjecture as an existence of a natural con-
struction of a triangulated category starting from an odd symplectic super-
manifold,

(3) a study of the arithmetic nature of coefficients in our formulas, and of the
possibility to extend the main results for algebraic varieties over an arbitrary field
of characteristic zero,

(4) an application to the Mirror Symmetry, which was the original motivation for
the Formality conjecture (see [33]),
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(5) a reformulation via a Lagrangian for a quantum field theory (from [1]) which
seems to present our formulas as a perturbation expansion,

(6) a version of the formality morphism for cyclic homology,

(7) a canonical quantization of quadratic brackets, and more generally of algebraic
Poisson manifolds.

1. Deformation Quantization
1.1. STAR PRODUCTS

Let 4 = T'(X, Ox) be the algebra over R of smooth functions on a finite-dimensional
C*-manifold X. A star product on 4 (see [6]) is an associative R[[fi]]-linear product
on A[[#]] given by the following formula for f,g € A C A[[A]]:

(f,g) = fxg=fg+hB\(f,g) + I*Br(f,g) + - - € A[[H]],

where 7 is the formal variable and B; are bidifferential operators (i.e. bilinear maps
A x A — A which are differential operators with respect to each argument of
globally bounded order). The product of arbitrary elements of A[[#]] is defined by the
condition of linearity over R][%]] and fi-adic continuity:

(Zﬁ,hn> * (Zg;ﬂi”) = Zﬁ(g,hk+l+ Z B,,1(fk,g1)hk+l+m.
n=0 n=0 k=0 ki=0m=>1

There is a natural gauge group acting on star products. This group consists of
automorphisms of A[[#]] considered as an R][[7]]-module (i.e. linear transformations
A — A parametrized by /), of the following form:

[ [+ hDi(f) + B’ Da(f) + - - for f€ 4 C A[[n]],
Zf,; H'— Zf,} '+ Z D,,(f,) "™, for general element f{h)

n=0 n=0 n=0m=>=1

=Y Ll € Al[A]),

n=0

where D; : A — A are differential operators. If D(7) =1+ 3, ., D, i is such an
automorphism, it acts on the set of star products as

* e fU) # g(h)
= D) (D)™ () = D(R)” (g(h) )
fin),g(h) € AIl]L

We are interested in star products up to gauge equivalence.

1.2. FIRST APPROXIMATION: POISSON STRUCTURES

It follows from the associativity of x that the bilinear map B: 4 x A— A satisfies
the equation
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fBi(g,h) — Bi(fg,h) + Bi(f,gh) — Bi(f,g)h = 0,

i.e. the linear map Bi: A® A —> A associated with B; as B, (f®g) = Bi(f,g),isa 2-
cocycle in the cohomological Hochschild complex of algebra A4 (the definition of this
complex is given in Section 3.4.2).
Let us decompose B into the sum of the symmetric part and of the anti-symmetric
part:
By :BT—’—BI_? BT(f,g):BT(g,f), Bl_(f?g):_Bl_(gvf)'
Gauge transformations
By — By, B\(f,g) = Bi(f.g) —fDi(g) + Di(fg) — Di(fg,
where D, is an arbitrary differential operator, affect only the symmetric part of By,
i.e. B = (B]) . One can show that the symmetric part B} can be killed by a gauge
transformation (and it is a coboundary in the Hochschild complex).
Also, one can show that the skew-symmetric part By is a derivation with respect to
both functions f'and g. Thus, By comes from a bi-vector field o on X:

B;(fag) = <O(,df®dg>, o e F(Xa /\2TX) - F(X7 TX® TX)

An analogous fact in algebraic geometry is that the second Hochschild cohomology
group of the algebra of functions on a smooth affine algebraic variety is naturally
isomorphic to the space of bi-vector fields (see [26] and also Section 4.6.1.).

The second term O(h2) in the associativity equation f* (g x &) = (f* g) = h implies
that o gives a Poisson structure on X,

vf g h {f,{g, h} +{g, {h.f}} + {h {fg}} =0,

where

(rep =T 208 289 = 20ndris de).

In other words, [¢, o] = 0 € T'(X, A3Ty), where the bracket is the Schouten—Nijenhuis
bracket on polyvector fields (see Section 4.6.1 for the definition of this bracket).

Thus, gauge equivalence classes of star products modulo O(fzz) are classified by
Poisson structures on X. A priori, it is not clear whether a star product exists with the
first term equal to a given Poisson structure and whether there exists a preferred
choice of an equivalence class of star products. In this Letter we show that there is a
canonical construction of an equivalence class of star products for any Poisson
manifold.

1.3. DESCRIPTION OF QUANTIZATIONS

THEOREM 1.1. The set of gauge equivalence classes of star products on a smooth
manifold X can be naturally identified with the set of equivalence classes of Poisson
structures depending formally on h:

a=oa(h) :oclh+oc2h2—|—~--GF(X,/\zTX)[[h]],[oc,a] =0eT(X,\3Ty)[[A]]
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modulo the action of the group of formal paths in the diffeomorphism group of X,
starting at the identity diffeomorphism.

Any given Poisson structure o) gives a path a(%z) := o) - and by the theorem
from above, a canonical gauge equivalence class of star products. We will not give a
proof of this theorem, as it is an immediate corollary of the Main Theorem of this
paper in Section 4.6.2 and a general result from deformation theory (see Section 4.4).

1.4. EXAMPLES
1.4.1. Moyal Product

The simplest example of a deformation quantization is the Moyal product for the
Poisson structure on R? with constant coefficients:

a:Zoc’j&»/\a,», O(ij:—OCiiER,
lJ
where 0; = 0/0x' is the partial derivative in the direction of coordinate x/,
i=1,---,d The formula for the Moyal product is

frg= fg+hZa”8 (Ndi(g) + Zoc”ock’(?@k(f)@a;( )+

ikl
= Zh Z wa (H 8,,() (f) x (H 3//(>
n=0 iy dnif1 e gn k=1

Here and later symbol x denotes the usual product.

1.4.2. Deformation Quantization up to the Second Order

Let o =3, a/9; A O; be a Poisson bracket with variable coefficients in an open
domain of [Rd (i.e. o/ is not a constant, but a function of coordinates), then the
following formula gives an associative product modulo O(A%):

fxg= fg+hZo¢”8 (Noi(g 2 Za’/ak’aak(f)aa,( )+

ik,

(Zoﬂa ) @06/ Dr(g) ak(f)a,-az(g>)>+0(h3>.

ik,
The associativity up to the second order means that for any three functions £, g, # one
has (fx g) xh =fx (gxh) + O(1).
1.5. REMARKS

In general, one should consider bidifferential operators B; with complex coefficients,
as we expect to associate by quantization self-adjoint operators in a Hilbert space to
real-valued classical observables. In this Letter we deal with purely formal algebraic
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properties of the deformation quantization and work mainly over the field R of real
numbers.

Also, it is not clear whether the natural physical counterpart for the ‘deformation
quantization’ for general Poisson brackets is the usual quantum mechanics. It is
definitely true for the case of nondegenerate brackets, i.e. for symplectic manifolds,
but our results show that in general a topological open string theory is more relevant.

2. Explicit Universal Formula

Here we propose a formula for the star product for arbitrary Poisson structure « in
an open domain of the standard coordinate space R?. Terms of our formula
modulo O(/i*) are the same as in the previous section, plus a gauge-trivial term of
order O(/*), symmetric in f and g. Terms of the formula are certain universal
polydifferential operators applied to coefficients of the bi-vector field « and to
functions f; g. All indices corresponding to coordinates in the formula appear once
as lower indices and once as upper indices, i.e. the formula is invariant under affine
transformations of RY.

In order to describe terms proportional to #" for any integer n >0, we introduce a
special class G, of oriented labeled graphs.

All graphs considered in this Letter are finite, oriented (i.e. every edge carries an
orientation), have no multiple edges and no loops. Such objects we will call here
simply graphs without adding adjectives.

DEFINITION 2.1. A graph I' is a pair (Vr, Er) of two finite sets such that Er is a
subset of (¥ x V1) \ Vr.

Elements of Vr are vertices of I', eclements of Er are edges of I'. If
e=(v1,m) € Er C Vr x Vris an edge, then we say that e starts at v; and ends at v;.

For any integer n>0, we define certain set G, of labeled graphs. We say that I’
(with some additional labels) belongs to G, if

(1) T has n+ 2 vertices and 2n edges,

(2) the set vertices Vris{l,...,n} U{L, R}, where L, R are just two symbols (capital
letters mean Left and Right),

(3) edges of T are labeled by symbols e}, e?, e}, e3,... el 2,

or every k € {1,...,n; edges labeled by e, and ¢; start at the vertex k.
4) f keA{l dges labeled by e} and e7 h k

Obviously, set G, is finite, it has (n(n+ 1))" elements for n>1 and one element for
n=0.
We associate a bidifferential operator
Bry:AxA— A, A=C>*(¥"), 7 isan open domain in RY.
with every labeled graph I' € G,,, which depends on the bi-vector field @ € T'(¥", A2Ty-),
which is not necessarily a Poisson one. We show one example, from which the general
rule should be clear. In Figure 1, we have n = 3 and the list of edges is
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Figure 1. An example of a graph.
(6}7 e%? eé? e%? e:l’ﬂ e%) = ((17 L)7 (17 R)7 (27 R)’ (27 3)7 (37 L)? (37 R))'
In the picture of I we put independent indices 1 <ij,...,is <d on edges, instead of
labels e}. The operator Br, corresponding to this graph is

(f7g) = Z ailizai3i46i4(ai5i6)8i1ai5(f)aizaizaie(g)'
1'1,4...1'()
The general formula for the operator Br, is
n
Bra(f.g) == Z H H An(e) a1 |
FEr—{1,...d} | k=1 \ ecEr e=(xk)

X H ey |f % H ey | 8-

e€Er,e=(*,L) e€Er,e=(%,R)

In the next step, we associate a weight Wt € R with each graph I € G,,.. In order to
define it we need an elementary construction from hyperbolic geometry.

Let p,q,p # g be two points in the upper half-plane # = {z € C|Im(z) > 0} en-
dowed with the Lobachevsky metric. We denote by ¢"(p, q) € R/2nZ the angle at p
formed by two lines, /(p, ¢) and /(p, co) passing through p and ¢, and through p and
the point co on the absolute. The direction of the measurement of the angle is
counterclockwise from /(p, c0) to (p,q). In the notation ¢"(p, ), h stands for har-
monic (see Figure 2).

Figure 2. Angle ¢
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An easy planimetry shows that one can express angle ¢"(p,¢) in terms of complex
numbers:

o1 (¢—r)(G—p)
¢h .q) =Arg((¢—p)/(q—D =—‘10g<f .
(r.4) = Arelg =)/ (g =) = los (=27 =L
Superscript h in the notation ¢" refers to the fact that q’)h(p,q) is a harmonic
function in both variables p, g € #. Function th(p, q) can be defined by continuity
also in the case p,qg € # UR,p # q.

Denote by s, the space of configurations of n numbered pairwise distinct points
on &

an = {(P17~~->Pn)‘17k S %7 Dk 7’5191 fork#l}

A, C C" is a noncompact smooth 2n-dimensional manifold. We introduce orien-
tation on J, using the natural complex structure on it.

If T € G, is a graph as above, and (py,...,p,) € #, is a configuration of points,
then we draw a copy of ' on the plane R> ~ C by assigning point p; € # to the
vertex k, 1<k<n, point 0 € R C C to the vertex L, and point 1 € R C C to the
vertex R. Each edge should be drawn as a line interval in hyperbolic geometry. Every
edge e of the graph I defines an ordered pair (p, ¢) of points on # LI R, thus an angle
q&? := ¢"(p, q). If points p; move around, we get a function qb? on #, with values in
R/2nZ.

We define the weight of T as

1 n
Wr - — —— d hl /\d h2 .
wr n!(27r)2"/‘ /\( ¢ek d)e/()

H n i=1

LEMMA 2.2. The integral in the definition of wr is absolutely convergent.

This lemma is a particular case of a more general statement proven in Section 6
(see the last sentence in Section 6.2).

THEOREM 2.3. Let o be a Poisson bi-vector field in a domain of RY. The formula

o0

fxg:= Zh” Z wrBr,(f, g)

n=0 reG,

defines an associative product. If we change coordinates, we obtain a gauge equivalent
star product.

The proof of this theorem is, in a sense, elementary, it only uses the Stokes formula
and combinatorics of admissible graphs. We will not give here the proof of this
theorem as it is a corollary of a general result proven in Section 6.
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3. Deformation Theory via Differential Graded Lie Algebras
3.1. TENSOR CATEGORIES SUPER AND GRADED

Here we make a comment about the terminology. This comment seems a bit
pedantic, but it could help in the struggle with signs in formulas.

The main idea of algebraic geometry is to replace spaces by commutative asso-
ciative rings (at least locally). One can further generalize this considering commu-
tative associative algebras in general tensor categories (see [11]). In this way, one can
imitate many constructions from algebra and differential geometry.

The fundamental example is supermathematics, i.e. mathematics in the tensor
category Super® of super vector spaces over a field k of characteristic zero (see
Chapter 3 in [39]). The category Super® is the category of Z/2Z-graded vector
spaces over k (representations of the group Z/27) endowed with the standard
tensor product, with the standard associativity functor, and with a modified
commutativity functor (the Koszul rule of signs). We denote by IT the standard
functor Super® — Super® changing the parity. It is given on objects by the formula
IV = V@ k"' In the sequel we will consider the standard tensor category Vect* of
vector spaces over k as the full subcategory of Super® consisting of pure even
spaces.

The basic tensor category which appears everywhere in topology and homo-
logical algebra is a full subcategory of the tensor category of Z-graded super vector
spaces. Objects of this category are infinite sums & = @®,cz&" such that &% is
pure even for even n, and pure odd for odd n. We will slightly abuse the language,
calling this category the category of graded vector spaces, and denote it simply by
Graded®. We denote by &” the usual k-vector space underlying the graded com-
ponent &". If we forget about Z-grading on & € Objects (Gradedk), then we
obtain a supervector space (—BHGZH"&.

Analogously, we will speak about graded manifolds. They are defined as super-
manifolds endowed with Z-grading on the sheaf of functions obeying the same
conditions on the parity as above.

The shift functor [1]:Graded* — Graded® (acting from the right) is defined as
the tensor product with graded space k[1] where k[1]™" ~ k, k[1]7~' = 0. Its powers
are denoted by [n], n € Z. Thus, for graded space &, we have & =@, _,&"[—n].
Almost all results in this paper formulated for graded manifolds, graded Lie alge-
bras, etc., also hold for supermanifolds, super Lie algebras, etc.

3.2. MAURER—CARTAN EQUATION IN DIFFERENTIAL GRADED LIE ALGEBRAS

This part is essentially standard (see [22, 24, 42]).
Let g be a differential graded Lie algebra over field k of characteristic zero. Below
we recall the list of structures and axioms:

g=0@P, 8-k, []:ged —d" dig—g",
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d(d()=0, dly,,72]=[dyy, 7]+ (=17 [p1,dpal, [2e]=— (=177,
1y 2,730 (S0 2 [y o]+ (= 1) 3, [3,94]] =0

In the formulas above, the symbols J; € Z mean the degrees of homogeneous
elements v;, i.e. y; € g'.

In other words, g is a Lie algebra in the tensor category of complexes of vector
spaces over k. If we forget about the differential and the grading on g, we obtain a
Lie superalgebra.

We associate with g a functor Def; on the category of finite-dimensional com-
mutative associative algebras over k, with values in the category of sets. First of all,
let us assume that g is a nilpotent Lie superalgebra. We define the set .#%(g) (the set
of solutions of the Maurer—Cartan equation modulo the gauge equivalence) by the
formula

ME(g) = {y € g'ldy +1[r,7] =0}/T,

where T is the nilpotent group associated with the nilpotent Lie algebra g°. The
group I'" acts by affine transformations of the vector space g'. The action of T is
defined by the exponentiation of the infinitesimal action of its Lie algebra:

o € g'— () =da+ [2,7]).

Now we are ready to introduce the functor Def,. Technically, it is convenient to
define this functor on the category of finite-dimensional nilpotent commutative
associative algebras without unit. Let m be such an algebra, m¥™™+! = 0. The
functor is given (on objects) by the formula

Defy(m) = .#/%(g @ m).
In the conventional approach m is the maximal ideal in a finite-dimensional Artin
algebra with unit m' :=m @ k- 1. In general, one can think about commutative
associative algebras without unit as about objects dual to spaces with base points.
Algebra corresponding to a space with base point is the algebra of functions van-
ishing at the base point.

One can extend the definition of the deformation functor to algebras with linear
topology which are projective limits of nilpotent finite-dimensional algebras. For
example, in the deformation quantization we use the following algebra over R:

m := AR[[A)] = lim (AR[A]/HR[A])  as k — oo

3.3. REMARK

Several authors, following a suggestion of Deligne, stressed that the set Defy(m)
should be considered as the set of equivalence classes of objects of certain groupoid
naturally associated with g(m). Almost always in deformation theory, differential
graded Lie algebras are supported in nonnegative degrees, g<° = 0. Our principal
example here, the shifted Hochschild complex (see the next subsection), has a non-
trivial component in degree —1, when it is considered as a graded Lie algebra. The set
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Def,(m) in such a case has a natural structure of the set of equivalence classes for a
2-groupoid. In general, if one considers differential graded Lie algebras with com-
ponents in negative degrees, one immediately meets polycategories and nilpotent
homotopy types. Still, it is only half of the story because one cannot say anything
about g=? using this language. Maybe, a better way is to extend the definition of the
deformation functor to the category of differential graded nilpotent commutative
associative algebras (see the last remark in Section 4.5.2).

3.4. EXAMPLES

There are many standard examples of differential graded Lie algebras and related
moduli problems.

3.4.1. Tangent Complex

Let X be a complex manifold. Define g over C as
g=@e-k; =T, 0} @1y°) fork=0, g"=0
kez
with the differential equal to 0, and the Lie bracket coming from the cup product on
O-forms and the usual Lie bracket on holomorphic vector fields.

The deformation functor related with g is the usual deformation functor for
complex structures on X. The set Defy(m) can be naturally identified with the set of
equivalence classes of analytic spaces X endowed with a flat map p: X — Spec(m’),
and an identification i: X Xgpecmy Spec(C) ~ X of the special fiber of p with X.

3.4.2. Hochschild Complex

Let 4 be an associative algebra over field k of characteristic zero. The graded space
of Hochschild cochains of 4 with coefficients in 4 considered as a bimodule over
itself is
C*(A,4) == @ C*(A4, 4)[—k], CN(4,4):=Homy, (4%, 4).
k>0
We define graded vector space g over k by the formula g := C*(A4, 4)[1]. Thus, we
have
g = Pe[-k]; g :=Hom(A®* D A) for k> -1, gV =o.
kez
The differential in g is shifted by 1, the usual differential in the Hochschild com-
plex, and the Lie bracket is the Gerstenhaber bracket. The explicit formulas for the
differential and for the bracket are

(dP)(ap ® - - - @ agy1)
=ay - O(a1 Q@ @ ary1)—

k
= ()00 @ ® (a4 131) @ -+ @ A1)+
i=0

+ (—1)/c¢’(ao ®- - @ag) - agr1, O € g,
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and
(@), 5] = D 0Dy — (—1)1RD, 0 @), D, € g5,
where the (nonassociative) product o is defined as
(@1 0Dr) (a0 @ -+ @ kyks )

ky .
=D (D00 (a® - @ a @ (Pr(a; @ -+ @ ayyr,))@
pary

® Aityt1 @+ @ Apeyhy ) -

We would also like to give here an abstract definition of the differential and of the
bracket on g. Let F denote the free coassociative graded coalgebra with counit
cogenerated by the graded vector space A[1]:F =P, ., @" (4[1]).

Graded Lie algebra g is the Lie algebra of coderivations of Fin the tensor category
Graded®. The associative product on A gives an element my € g', my: AQ A — A
satisfying the equation [m,4,m,] = 0. The differential d in g is defined as ad(m,).

Again, the deformation functor related to g is equivalent to the usual deformation
functor for algebraic structures. Associative products on A correspond to solutions
of the Maurer—Cartan equation in g. The set Defy(m) is naturally identified with the
set of equivalence classes of pairs (2 ,I) where A is an associative algebra over
m =mak-1 such that A4 is free as an m’-module, and i an isomorphism of k-
algebras A@mk~ A

The cohomology of the Hochschild complex are

HH(4,4) = Ext'__ 4 (4,4),

the Ext-groups in the Abelian category of bimodules over 4. The Hochschild
complex without shift by 1 also has a meaning in deformation theory, it also has a
canonical structure of differential graded Lie algebra, and it controls deformations of
A as a bimodule.

4. Homotopy Lie Algebras and Quasi-isomorphisms

In this section we introduce a language convenient for the homotopy theory of
differential graded Lie algebras and for the deformation theory. The ground field k
for linear algebra in our discussion is an arbitrary field of characteristic zero, unless
specified.

4.1. FORMAL MANIFOLDS

Let V' be a vector space. We denote by C(V) the cofree cocommutative coassociative
coalgebra without counit cogenerated by V-

7 Z, n
C(V):@)1>1(®1V) C®n21(® V)
Intuitively, we think about C(¥) as about an object corresponding to a formal
manifold, possibly infinite-dimensional, with base point:

(Viormal, base point ) := ( Formal neighborhood of zero in V,0).
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The reason for this is that if V' is finite-dimensional, then C(V)" (the dual space to
C(V)) is the algebra of formal power series on V vanishing at the origin.

DEFINITION 4.1 A formal pointed manifold M is an object corresponding to a
coalgebra ¢ which is isomorphic to C(¥V) for some vector space V.

The specific isomorphism between € and C(V) is not considered as a part of the
data. Nevertheless, the vector space ¥ can be reconstructed from M as the space of
primitive elements in coalgebra %. Here for a nonunital coalgebra 4 = C(V) we
define primitive elements as solutions of the equation A(a) =0, where
A: A — A ® A is the coproduct on A.

Speaking geometrically, V is the tangent space to M at the base point. A choice of
an isomorphism between % and C(V) can be considered as a choice of an affine
structure on M.

If V| and V), are two vector spaces, then a map f between corresponding formal
pointed manifolds is defined as a homomorphism of coalgebras (a kind of the
pushforward map on distribution-valued densities supported at zero)

By the universal property of cofree coalgebras, any such homomorphism is uniquely
specified by a linear map C(V,) — V5. which is the composition of f,. with the
canonical projection C(V,) — V>. Homogeneous components of this map,

f(ﬂ> : (®”(V1))z” — Vy, n=1

can be considered as Taylor coefficients of f. More precisely, Taylor coefficients are
defined as symmetric polylinear maps

8}1

'f: " (V) — Va, anf("l"'vn)::atl...ﬁt [——

(f(tlvl +e b))

Map 9"f goes through the quotient Sym” (V) := (®"V1)y, . Linear map /" coincides
with @"f after the identification of the subspace ("V)™ C @"V, with the quotient
space Sym" (V7).

As in the usual calculus, there is the inverse mapping theorem: nonlinear map f'is
invertible iff its first Taylor coefficient AU): I/ — ¥/, is invertible.

Analogous definitions and statements can be made in other tensor categories,
including Super* and Graded*.

The reader can ask why we speak about base points for formal manifolds, as such
manifolds have only one geometric point. The reason is that later we will consider
formal graded manifolds depending on formal parameters. In such a situation the
choice of the base point is a nontrivial part of the structure.
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4.2. PRE-L..-MORPHISMS

Let g, and g, be two graded vector spaces.

DEFINITION 4.2. A pre-L,.-morphism % from g, to g, is a map of formal pointed
graded manifolds

T ((gl[l])formaho) - ((g2[1])formal’0)'

Map 7 is defined by its Taylor coefficients which are linear maps 9"% of graded
vector spaces:

819: g — 2
PT: N (g) — gl-1],

PF:N(g) — -2

Here we use the natural isomorphism Sym”(g;[1]) ~ (A"(g;))[#]. In plain terms, we
have a collection of linear maps between ordinary vector spaces

k ki kit Ak +(1—
?(kl,“.,kn):gll@...@glf _)g21+ +hy+(1=n)

with the symmetry property

kikiy
g;(kl ,,,,, kn)(yl @ Vn) = _(_1) lg;(k],...,k,’+1,k,‘,.‘.,ku)
(MN® ®Yy1 @)@ - ®Y,).

One can write (slightly abusing notations)
ST AN0) =T ) (1 © - @ 7)

for y; € g]f[,i: I,...,n.
In the sequel, we will denote 0"% simply by & .

4.3. L.-ALGEBRAS AND L.-MORPHISMS

Suppose that we have an odd vector field Q of degree +1 (with respect to Z-garding)
on formal graded manifold (g[1],,,.;- 0) such that the Taylor series for coefficients of
0 has terms of polynomial degree 1 and 2 only (i.c. linear and quadratic terms). The
first Taylor coefficient Q; gives a linear map g — g of degree +1 (or, better, a map
g — g[1]). The second coefficient Q,: A’g — g gives a skew-symmetric bilinear
operation of degree 0 on g.

It is easy to see that if [Q, O, = 20% =0, then g is a differential graded Lie
algebra, with differential Q; and the bracket Q,, and vice-versa.

In [1], supermanifolds endowed with an odd vector field Q such that
[Q,Q]Super = 0, are called Q-manifolds. By analogy, we can speak about formal
graded pointed Q-manifolds.
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DEFINITION 4.3. An L-algebra is a pair (g, Q) where g is a graded vector space
and Q is a coderivation of degree +1 on the graded coalgebra C(g[l]) such that

02 = 0.

Other names for L.-algebras are ‘(strong) homotopy Lie algebras’ and ‘Sugawara
algebras’ (see, e.g., [25]).

Usually we will denote L..-algebra (g, Q) simply by g.

The structure of an L.,-algebra on a graded vector space g is given by the infi-
nite sequence of Taylor coefficients Q; of the odd vector field Q (coderivation of

C(g[1])):

Ql g g[1]7
QZZ /\Z(g) — 8
03: N (g) — g[-1],

The condition Q%> = 0 can be translated into an infinite sequence of quadratic con-
straints on polylinear maps Q;. First of these constraints means that Q; is the dif-
ferential of the graded space g. Thus, (g, Q) is a complex of vector spaces over k.
The second constraint means that Q, is a skew-symmetric bilinear operation on g,
for which Q) satisfies the Leibniz rule. The third constraint means that Q, satisfies
the Jacobi identity up to homotopy given by Qs, etc. As we have seen, a differential
graded Lie algebra is the same as an L..-algebra with Q3 = Q4 =--- = 0.
Nevertheless, we recommend to return to the geometric point of view and think in
terms of formal graded Q-manifolds. This naturally leads to the following definition:

DEFINITION 4.4. An L -morphism between two L.,-algebras g, and g, is a pre-
L,-morphism % such that the associated morphism ., : C(g,[1]) — C(g,[1]) of
graded cocommutative coalgebras, is compatible with coderivations.

In geometric terms, an L.-morphism gives a Q-equivariant map between two
formal graded manifolds with base points.

For the case of differential graded Lie algebras, a pre-L..-morphism % is an L-
morphism iff it satisfies the following equation for any n = 1,2... and homogeneous
elements y; € g;:

n
AT (i Apa A Ap) = D ETa (i Ao Ady A A,)
i=1

1 1 _
=3 Y T EF ke A A1) F il Ao A )
kJi=1k+Il=n"""c€X,

+Zi9n71(b’ia)’j]/\?1/\"'/\’?i/\"'/\“:’j/\"'/\"/n)
i<j



174 MAXIM KONTSEVICH

Here are first two equations in the explicit form:
d7 (1) = Z1(dyy),
dF2(0 A 2) = Fa(dy Ap) = (1) Fa(y) Adyy)
=Z1(0)) = 1 Z101), Z1(0)].

We see that % is a morphism of complexes. The same is true for the case of
general L -algebras. The graded space g for an L.,-algebra (g, Q) can be considered
as the tensor product of k[—1] with the tangent space to the corresponding formal
graded manifold at the base point. The differential O, on g comes from the action of
QO on the manifold.

Let us assume that g, and g, are differential graded Lie algebras, and % is an Lo-
morphism from g, to g,. Any solution y € g} ® m of the Maurer—Cartan equation
where m is a nilpotent nonunital algebra, produces a solution of the Maurer—Cartan
equation in g} ® m:

dy+3y. 7] =0=dy+1[},7] =0, where7=3"" | L7 ,(yA---Ay) egl@m.

n=1n!

The same formula is applicable to solutions of the Maurer—Cartan equation
depending formally on the parameter 7:

y(h) = h+ i+ € g1 [[n]],

dy(h) + 3[y(h), ()] = 0 = dy(h) +3[y(n), y(7)] = 0.

The reason why it works is that the Maurer—Cartan equation in any differential
graded Lic algebra g can be understood as the collection of equations for the sub-
scheme of zeroes of Q in formal manifold g[1], ...

dy +3[p,7] =0 <= @), = 0.

L..-morphisms map zeroes of O to zeroes of Q because they commute with Q. We
will see in Section 4.5.2 that L..-morphisms induce natural transformations of
deformation functors.

4.4. QUASI-ISOMORPHISMS

L-morphisms generalize usual morphisms of differential graded Lie algebras. In
particular, the first Taylor coefficient of an L,-morphism from g, to g, is a mor-
phism of complexes (g;, 0'¥) — (g,, 0'®)) where Q| are the first Taylor coeffi-
cients of vector fields Q&) (which we denoted before simply by Q).

DEFINITION 4.5. A quasi-isomorphism between L.-algebras g;,g, is an L..-
morphism % such that the first component % induces isomorphism between
cohomology groups of complexes (g;, 0\#) and (g,, 0'®).

Similarly, we can define quasi-isomorphisms for formal graded pointed Q-mani-
folds, as maps inducing isomorphisms of cohomology groups of tangent spaces at
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base points (endowed with differentials which are linearizations of the vector field
0).

The essence of the homotopy/deformation theory is contained in the following
theorem:

THEOREM 4.6. Let g,,8, be two Ly-algebras and F be an L.-morphism from g, to
g,. Assume that F is a quasi-isomorphism. Then there exists an Ly,-morphism from g,
to g, inducing the inverse isomorphism between cohomology of complexes
(g, Q(lg")) i=1,2. Also, for the case of differential graded algebras, L..-morphism %
induces an isomorphism between deformation functors associated with g;.

The first part of this theorem shows that if g; is quasi-isomorphic to g, then g, is
quasi-isomorphic to g;, i.e. we get an equivalence relation.

The isomorphism between deformation functors at the second part of the theorem
is given by the formula from the last part of Section 4.3.

This theorem is essentially standard (see related results in [22, 24, 42]). Our ap-
proach consists in the translation of all relevant notions to the geometric language of
formal graded pointed Q-manifolds.

4.5. A SKETCH OF THE PROOF OF THEOREM 4.6
4.5.1. Homotopy Classification of Ly.-algebras

Any complex of vector spaces can be decomposed into the direct sum of a complex
with trivial differential and a contractible complex. There is an analogous decom-
position in the nonlinear case.

DEFINITION 4.7. An L-algebra (g, Q) is called minimal if the first Taylor coef-
ficient O, of the coderivation Q vanishes.

The property of being minimal is invariant under L..-isomorphisms. Thus, one
can speak about minimal formal graded pointed Q-manifolds.

DEFINITION 4.8. An L..-algebra (g, Q) is called linear contractible if higher
Taylor coefficients Q» vanish and the differential Q| has trivial cohomology.

The property of being linear contractible is not L..-invariant. One can call formal
graded pointed Q-manifold contractible iff the corresponding differential graded
coalgebra is L,-isomorphic to a linear contractible one.

LEMMA 4.9. Any Ly.-algebra (g, Q) is Loo-isomorphic to the direct sum of a minimal
and of a linear contractible L..-algebras.
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Proof. This lemma says that there exists an affine structure on a formal graded
pointed manifold in which the odd vector field Q has the form of a direct sum of a
minimal and a linear contractible one. This affine structure can be constructed by
induction in the degree of the Taylor expansion. The base of the induction is the
decomposition of the complex (g, Q;) into the direct sum of a complex with van-
ishing differential and a complex with trivial cohomology. We leave details of the
proof of the lemma to the reader. O

As a side remark, we mention analogy between this lemma and a theorem from
singularity theory (see, for example, the beginning of 11.1 in [2]): for every germ f of
analytic function at critical point one can find local coordinates
(x',..., 2% y1 oo ) such that f= constant + Qy(x) + Qx3(y), where Q) is a
nondegenerate quadratic form in x and Q>3(») is a germ of a function in y such that
its Taylor expansion at y = 0 starts at terms of degree at least 3.

Let g be an L..-algebra and g™" be a minimal L.-algebra as in the previous
lemma. Then there are two L.,-morphisms (projection and inclusion)

(g[l]formab 0) - (gmin[l]formah 0)7 (gmin[l]formah 0) - (g[l}formah 0)7
which are both quasi-isomorphisms. From this follows that if

(gl [l]formah 0) - (g2 [l]formal7 0)

is a quasi-isomorphism then there exists a quasi-isomorphism

(grlnm[l]formal) 0) — (génin[l]formal’ 0)

Any quasi-isomorphism between minimal L..-algebras is invertible, because it in-
duces an isomorphism of spaces of cogenerators (the inverse mapping theorem
mentioned at the end of Section 4.1). Thus, we proved the first part of the theorem.
Also, we see that the set equivalence classes of L..-algebras up to quasi-isomor-
phisms can be naturally identified with the set of equivalence classes of minimal L,-
algebras up to L..-isomorphisms.

4.5.2. Deformation Functors at Fixed Points of Q

The deformation functor can be defined in terms of a formal graded Q-manifold M
with base point (denoted by 0). The set of solutions of the Maurer—Cartan equation
with coefficients in a finite-dimensional nilpotent nonunital algebra m is defined as
the set of m-points of the formal scheme of zeroes of Q:

Maps((Spec(m @ k - 1), base point ), (Zeroes(Q),0))
C Maps((Spec(m @ k - 1), base point ), (M, 0)).
In terms of the coalgebra & corresponding to M this set is equal to the set of

homomorphisms of coalgebras m* — % with the image annihilated by Q. Another
way to say this is to introduce a global (i.e. not formal) pointed Q-manifold of maps
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from (Spec(m @ k - 1), base point) to (M, 0) and consider zeroes of the global vector
field Q on it.

Two solutions py and p; of the Maurer—Cartan equation are called gauge equiv-
alent iff there exists (parametrized by Spec(m @ k - 1)) polynomial family of odd
vector fields &(7) on M (of degree —1 with respect to Z-grading) and a polynomial
solution of the equation

d[zli(tl) = (19, €Dsuper) s P(0) =po,  p(1) = p1,

where p(7) is a polynomial family of m-points of formal graded manifold M with
base point.

In terms of L,-algebras, the set of polynomial paths {p(¢)} is naturally identified
with g! ® m @ k[z]. Vector fields ¢(¢) depending polynomially on ¢ are not necessarily
vanishing at the base point 0.

One can check that the gauge equivalence defined above is indeed an equivalence
relation, i.e. it is transitive. For formal graded pointed manifold M we define set
Def),(m) as the set of gauge equivalence classes of solutions of the Maurer—Cartan
equation. The correspondence m — Def),(m) extends naturally to a functor denoted
also by Def)y,. Analogously, for L..-algebra g, we denote by Def, the corresponding
deformation functor.

One can easily prove the following properties:

(1) for a differential graded Lie algebra g the deformation functor defined as above
for (g[1)¢yrmars 0), is naturally equivalent to the deformation functor defined in
Section 3.2,

(2) any L,,-morphism gives a natural transformation of functors,

(3) the functor Defy og, corresponding to the direct sum of two L.-algebras, is
naturally equivalent to the product of functors Defy, x Defy,,

(4) the deformation functor for a linear contractible L..-algebra g is trivial, Defy(m)
is a one-element set for every m.

Properties (2)—(4) are just trivial, and (1) is easy. It follows from properties (1)—(4) that
if an L,,-morphism of differential graded Lie algebras is a quasi-isomorphism, then it
induces an isomorphism of deformation functors. Theorem 4.6 is proven. O

We would like to notice here that in the definition of the deformation functor one
can consider just a formal pointed super Q-manifold (M, 0) (i.e. not a graded one),
and m could be a finite-dimensional nilpotent differential super commutative asso-
ciative nonunital algebra.

4.6. FORMALITY

4.6.1. Two Differential Graded Lie Algebras

Let X be a smooth manifold. We associate with it two differential graded Lie alge-
bras over R. The first differential graded Lie algebra Dy (X) is a subalgebra of the
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shifted Hochschild complex of the algebra 4 of functions on X (see Section 3.4.2).
The space D2, (X),n=> — 1 consists of Hochschild cochains A"*!) — 4 given by
polydifferential operators. In local coordinates (x') any element of Dy, can be
written as
fO - ®f;1’_> Z CIO """" I” X alo(f(]) 81,,%)5
(Tory)

where the sum is finite, /; denote multi-indices, J;, denote corresponding partial
derivatives, and f; and C are functions in (x7).

The second differential graded Lie algebra, Ty (X) is the graded Lie algebra of

polyvector fields on X:
Thoy(X) = T'(X, ATy, n= -1
endowed with the standard Schouten—Nijenhuis bracket and with the differential

d:= 0. We recall here the formula for this bracket:
for k,/=0,

[Co A Ao Ao Any
ko1
= ZZ(_I)I+l+k[§i,Wj] NE A NG NSt A A
/\fk/\ﬂo/\/\]’]j_l/\n]+l/\/\7”1,
where &, n; € T(X, Ty),
for k=0,
[Co Ao A&,

k
=) (=DE&MR) - (Go N A& A A A&,

i=0
he F(X, (/ﬂx), f,- S F(X, Tx).

In local coordinates (x!,...,x?), if one replaces 8/8x' by odd variables y; and
writes polyvector fields as functlons in (x! Xy, ... ¥,), the bracket is

kik
D =vie9— (1) ey,
where we introduce the following notation:

dy, Oy -
R A

4. 6 1 1. A4 map from Tpoy(X) to Dpoy(X). We have an evident map
02/ Tpoly(X) — Dpoiy(X). It is defined, for n>0, by

%(10):(50/\.“/\6")'_><f0®“.®f"'_)ﬁZ sgn Héa, >

€L,

and for h € T(X, Ox) by h—(1—h).
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THEOREM 4.10. %(10) is a quasi-isomorphism of complexes.

This is a version of the Hochschild—Kostant—Rosenberg theorem which says that,
for a smooth affine algebraic variety Y over a field k of characteristic zero, the
Hochschild cohomology of algebra (@(Y) coincides with the space
@r>ol (X, \¥Ty)[—k] of algebraic polyvector fields on Y (see [26]). The analogous
statement for C°° manifolds seems to be well known, although we were not able to
find it in the literature (e.g. in [7] a similar statement was proven for Hochschild
homology). In any case, we give here a proof.

Proof. First of all, one can immediately check that the image of % (10) is annihilated
by the differential in Dpory(X), i.e. that W/<10> is a morphism of complexes.

Complex Dpoy(X) is filtered by the total degree of polydifferential operators.
Complex Tpoly(X) endowed with zero differential also carries a very simple filtration
(just by degrees), such that %g()) is compatible with filtrations. We claim that

Gr (") : Gr(Tpoty (X)) — Gr(Dpory (X))

is a quasi-isomorphism. In the graded complex Gr(Dpoy(X)) associated with the
filtered complex Dy,ly (X) all components are sections of some natural vector bundles
on X, and the differential is A-linear, A = C*(X). The same is true by trivial reasons
for Tpoy(X). Thus, we have to check that the map Gr(“?/(lo)) is a quasi-isomorphism
fiberwise.

Let x be a point of X and T be the tangent space at x. Principal symbols of
polydifferential operators at x lie in vector spaces

Sym(7) ® --- @ Sym(7T) (n times, n=0),
where Sym(7) is the free polynomial algebra generated by T. It is convenient here to

identify Sym(7) with the cofree cocommutative coassociative coalgebra with counit
cogenerated by T:

@ :=C(T)®(k-1).

Sym(T) is naturally isomorphic to the space of differential operators on 7 with
constant coefficients. If D is such an operator, then it defines a continuous linear
functional on the algebra of formal power series at 0 € T
S = (D()(0),
i.e. an element of coalgebra .
We denote by A the coproduct in coalgebra €. It is easy to see that differential in
the complex Gr(Dpory(X)) in the fiber at x is the following:

di ®n+l(g N ®”+2(€7
n

d=1"®@idgug— Y (1) id@- @A @ id+ (=1)" idgumg @17,
i=0

where A; is coproduct A applied to the ith argument.
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LEMMA 4.11. Let € be the cofree cocommutative coassociative coalgebra with counit
cogenerated by a finite-dimensional vector space T. Then the natural homomorphism of
complexes

(NTLT, differential = 0) — ("€, differential as above )

is a quasi-isomorphism.

What we consider is one of the standard complexes in homological algebra. One of
possible proofs is the following:

Proof. Let us decompose complex (2"+'%) into the infinite direct sum of sub-
complexes consisting of tensors of fixed total degrees (homogeneous components
with respect to the action of the Euler vector field on 7). Our statement means in
particular that for only finitely many degrees these subcomplexes have nontrivial
cohomology. Thus, the statement of the lemma is true iff the analogous statement
holds when infinite sums are replaced by infinite products in the decomposition of
(@"*1%). Components of the completed complex are spaces Hom(A4®("+1) k), where
A is the algebra of polynomial functions on 7. It is easy to see that the completed
complex calculates groups Ext’/’lflmod(k, k) = A" T, where the one-dimensional space
k is considered as an A-module (via values of polynomial at 0 € T) and has a
resolution

—ARA— A —0— -
by free 4-modules. O

As a side remark, we notice that the statement of the lemma also holds if one
replaces € by C(T) (i.e. the free coalgebra without counit) and removes terms with 1*
from the differential. In the language of Hochschild cochains, it means that the
subcomplex of reduced cochains is quasi-isomorphic to the total Hochschild com-
plex.

The lemma implies that Gr(%(l())) is an isomorphism fiberwise. Applying the
standard argument with spectral sequences, we obtain the proof of the theorem. []

4.6.2. Main Theorem

Unfortunately, map ”ZJEO) does not commute with Lie brackets, the Schouten—Ni-
jenhuis bracket does not go to the Gerstenhaber bracket. We claim that this defect
can be cured:

MAIN THEOREM There exists an Log-morphism U from Tyory(X) to Dpoy(X) such
that U, = U\

In other words, this theorem says that Tpo1y (X) and Dpory(X) are quasi-isomorphic
differential graded Lie algebras. In analogous situation in rational homotopy theory
(see [43]), a differential graded commutative algebra is called formal if it is quasi-
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isomorphic to its cohomology algebra endowed with zero differential. This explains
the title of Section 4.6.

The quasi-isomorphism % in the theorem is not canonical. We will construct
explicitly a family of quasi-isomorphisms parametrized in certain sense by a con-
tractible space. It means that our construction is canonical up to (higher) homoto-
pies.

Solutions of the Maurer—Cartan equation in Ty (X) are exactly Poisson struc-
tures on X:

%€ Thyy(X) =T(X,A°Ty), [o,0] =0.
Any such o defines also a solution formally depending on 7,

p(h) =0 h e Ty (X)[[A] - [y(h), y(h)] = 0.
The gauge group action is the action of the diffeomorphism group by conjugation.
Solutions of the Maurer—Cartan equation in Dy, (X) formally depending on 7 are
star products. Thus, we obtain as a corollary that any Poisson structure on X gives a
canonical equivalence class of star products, and the Theorem 1.1.

The rest of the paper is devoted to the proof of the Main Theorem, and to the

discussion of various applications, corollaries and extensions. In Section 5, we will
make some preparations for the universal formula (Section 6) for an L.,-morphism

from Tioly(X) to Dpoly(X) in the case of flat space X = R?. In Section 7 we extend our
construction to general manifolds.

4.6.3. Nonuniqueness

There are other natural quasi-isomorphisms between 71y (X) and Doy (X) which
differ essentially from the quasi-isomorphism % constructed in Sections 6 and 7, i.e.
not even homotopic in a natural sense to %. By homotopy here we mean the fol-
lowing. L,-morphisms from one L. -algebra to another can be identified with fixed
points of Q on infinite-dimensional supermanifold of maps. Mimicking construc-
tions and definitions from Section 4.5.2, one can define an equivalence relation
(homotopy equivalence) on the set of L.-morphisms.

Firstly, the multiplicative group R* acts by automorphisms of Ty (X), multi-
plying elements y € Tpoly (X )k by /X for 2 € R*. Composing these automorphisms
with % one get a one-parameter family of quasi-isomorphisms. Secondly, in [31] we
constructed an exotic infinitesimal Ly-automorphism of Ty (X) for the case
X = R? which probably extends to general manifolds. In particular, this exotic
automorphism produces a vector field on the ‘space of Poisson structures’. The
evolution with respect to time ¢ is described by the following non linear partial
differential equation:

3 0 kk' i mm’
%:: Z ooy 80(/8051&1 @00,
ds OxkOx!oxm Ox!'" OxM Oxk

ik mk! I .m'

where o = 37, . a/(x)9; A 9 is a bi-vector field on RY.
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A priori, we can guarantee the existence of a solution of the evolution only for
small times and real-analytic initial data. One can show that:

(1) this evolution preserves the class of (real-analytic) Poisson structures,
(2) if two Poisson structures are conjugate by a real-analytic diffeomorphism, then
the same will hold after the evolution.

Thus, our evolution operator is essentially intrinsic and does not depend on the
choice of coordinates.

Combining it with the action of R* as above we see that the Lie algebra aff(1, R)
of infinitesimal affine transformations of the line R! acts nontrivially on the space of
homotopy classes of quasi-isomorphisms between Tpoy(X) and Dy (X). Maybe,
there are other exotic L.,-automorphisms, this possibility is not ruled out. It is not
clear whether our quasi-isomorphism % is better than others.

5. Configuration Spaces and their Compactifications
5.1. DEFINITIONS

Let n,m be nonnegative integers satisfying the inequality 2n + m>2. We denote by
Conf,,, the product of the configuration space of the upper half-plane with the
configuration space of the real line:

Confn‘m - {(]71,- Py qls - Jlm) ‘pl € %7qj € Rapil %piz for
i\ # b, q;, # q;, for j1 # o}

Conf, ,, is a smooth manifold of dimension 2n 4+ m. The group G of holomor-
phic transformations of CP! preserving the upper half-plane and the point oo, acts
on Conf}, ,,. This group is a two-dimensional connected Lie group, isomorphic to the
group of orientation-preserving affine transformations of the real line:

GV ={z—az+b|a,beR,a>0}.

It follows from the condition 21 + m >2 that the action of G\ on Conf, ,, is free.
The quotient space C,,, := Conf,,,/ G is a manifold of dimension 2n 4+ m — 2. If
P=(pi,....Pu;q1,---,qm) is a point of Conf,,,, then we denote by [P] the corre-
sponding point of C,, ,.

Analogously, we introduce simpler spaces Conf,, and C, for any n>2:

Confy, == {(p1,...,pn) | pi € C, pi # pj for i # j},
C, = Conf,/G%, dim(C,) =2n — 3,

where G is a three-dimensional Lie group,
G? ={zraz+b|acRbecC,a>0}

We will construct compactifications f‘mm of C,,, (and compactifications C, of C)
which are smooth manifolds with corners.

We recall that a manifold with corners (of dimension d) is defined analogously to a
usual manifold with boundary, with the only difference being that the manifold with
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corners looks locally as an open part of the closed simplicial cone (Rzo)d. For
example, the closed hypercube [0, l]d is a manifold with corners. There is a natural
smooth stratification by faces of any manifold with corners.

First of all, we give one of possible formal definitions of the compactification C,
where n>2. With any point [(pi, ..., pn)] of C,, we associate a collection of n(n — 1)
angles with values in R/2nZ: (Arg(p; — p;)); and n*(n — 1)* ratios of distances.

(i = il /P = P11) iy et
It is easy to see that2 we obtain an embedding of C, into the manifold
(R/277)"" V) x Rfé"il) . The space C, is defined as the compactification of the
image of this embedding in larger manifold

(R/27Z)"" ™) x [0, +-00]" "V’

For the space C, ,, we use first its embedding to C,,,, which is defined on the level of
configuration spaces as

(pl’ e Py 4t - ~7qm)'_>(1’17- c P Prs - Pus q1 - ~~,q;n)
and then compactify the image in C,,,,,. The result is by definition the compactified
space Cy .

One can show that open strata of C,,, are naturally isomorphic to products of
manifolds of type Cy,s and C,. In the next subsection we will describe explicitly
Cp.m as a manifold with corners.

There is a natural action of the permutation group X, on C,, and also of £, x X,
on C,,,. This gives us a possibility to define spaces C4 and C, p for finite sets 4, B
such that #A4 =2 or 2#A4 + #B>2, respectively. If 4’ — 4 and B’ — B are inclusions
of sets, then there are natural fibrations (forgetting maps) C4 — C4 and
Cyp— Cup.

5.2. LOOKING THROUGH A MAGNIFYING GLASS

From the definition of the compactification given in the previous subsection, it is not
clear what is exactly the point of the compactified space. We are going to explain an
intuitive idea underlying a direct construction of the compactification Z’mm as a
manifold with corners. For more formal treatment of compactifications of config-
uration spaces, we refer the reader to [17] (for the case of smooth algebraic varieties).

Let us try to look through a magnifying glass, or better through a microscope with
arbitrary magnification, at different parts of the picture formed by points on
#UR C C and by the line R C C. Here we use Euclidean geometry on C ~ R?
instead of Lobachevsky geometry.

Before doing this, let us first consider the case of a configuration on R*> ~ C, i.e.
without the horizontal line R C C. We say that the configuration (py,...,p,) is in
standard position iff

(1) the diameter of the set {pi,...,p,} is equal to 1, and
(2) the center of the minimal circle containing {p;,...,p,} is 0 € C.
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5, "

Figure 3. Configuration of points close to the boundary of the compactified configura-
tion space.

It is clear that any configuration of n pairwise distinct points in the case n>2 can
be uniquely put to the standard position by a unique element of group G?). The set
of configurations in the standard position gives a continuous section s of the
natural projection map Conf, — C,,.

For a configuration in the standard position there could be several domains where
we will need magnification in order to see details. These domains are those where at
least two points of the configuration come too close to each other.

After an appropriate magnification of any such domain, we again get a stable
configuration (i.e. the number of points there are at least 2). Then we can put it again
in the standard position and repeat the procedure.

In such a way, we get an oriented tree 7 with one root, and leaves numbered from
1 to n. For example, the configuration in Figure 3 gives the tree in Figure 4.

For every vertex of tree T except leaves, we denote by Star(v) the set of edges
starting at v. For example, in the figure from above the set Star(root) has three
elements, and sets Star(v) for other three vertices all have two elements.

Points in C, close to one which we consider, can be parametrized by the following
data:

(a) for each vertex v of T except leaves, a configuration ¢, in the standard position of
points labeled by the set Star(v),

Figure 4. Tree corresponding the limiting point in the configuration space.
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(b) for each vertex v except leaves and the root of the tree, the scale s, > 0 with
which we should put a copy of ¢, instead of the corresponding point p, € C on
configuration ¢, where u € Vr is such that (u,v) € E7.

More precisely, we act on the configuration ¢, by the element (z+— s,z + p,) of GY,

Numbers s, are small but positive. The compactification C, is achieved by for-
mally permitting some of scales s, to be equal to 0.

In this way we get a compact topological manifold with corners, with strata Cr
labeled by trees T (with leaves numbered from 1 to n). Each stratum C7 is canoni-
cally isomorphic to the product ], Csur(,) over all vertices v except leaves.

In the above description points of C7 correspond to collections of configurations

with all scales s, equal to zero. Let us repeat: as a set C, coincides with

H Cstar(y)-

trees T veVr\{leaves}

In order to introduce a smooth structure on C,, we should choose a X,-equivariant
smooth section s™°°" of the projection map Conf, — C, instead of the section s
given by configurations in the standard position. Local coordinates on C, near a
given point lying in stratum Cr are scales s, € R close to zero and local coordi-
nates in manifolds Cgy(,) for all v € V7 )\ {leaves}. The resulting structure of a
smooth manifold with corners does not depend on the choice of the section sm°oth,

The case of configurations of points on 2 U R is not much harder. First of all we
say that a finite nonempty set S of points on # U R is in the standard position ift

(1) the projection of the convex hull of S to the horizontal line R C C ~ R? is either
the one-point set {0}, or it is an interval with the center at 0,
(2) the maximum of the diameter of S and of the distance from S to R is equal to 1.

It is easy to see that for 2n + m =2 (the stable case) any configuration of n points on
# and m points on R can be put uniquely in standard position by an element of G(V).
In order to get a smooth structure, we repeat the same arguments as for the case of
manifolds C,,.

Domains where we will need magnification in order to see details, are now of two
types. The first case is when at least two points of the configuration come too close to
each other. We want to know whether what we see is a single point or a collection of
several points. The second possibility is when a point on # comes too close to R.
Here we also want to decide whether what we see is a point (or points) on  or on R.

If the domain which we want to magnify is close to R, then after magnification we
again get a stable configuration which we can put into the standard position. If the
domain is inside &, then after magnification we get a picture without the horizontal
line in it, and we are back in the situation concerning C, for n' <n.

It is instructional to draw low-dimensional spaces C,,. The simplest one,
C1o = Cigisjusta point. The space Co, = C, is a two-element set. The space Ci
is an open interval, and its closure C; is a closed interval (the real line R C C is
dashed in Figure 5).



186 MAXIM KONTSEVICH

m .
0=q,

Figure 5. Space C1; homeomorphic to an interval.

Figure 6. Space C,.

The space C» is diffeomorphic to # \ {0+ 1 - i}. The reason is that by the action
of G we can put point p; to the position i = v/—1 € #. The closure Cy can be
drawn as in Figure 6 or as in Figure 7.

Forgetting maps (see the end of Section 5.1) extend naturally to smooth maps of
compactified spaces.

5.2.1. Boundary Strata
We give here a list of all strata in Z’A,B of codimension 1:

(S1) points p; € # for i € S C A, where #S > 2, move close to each other but far
from R,
(S2) points p;e # for ie SCA and points ¢;€ R for je S C B, where
24#S + #S’ = 2, all move close to each other and to R, with at least one point
left outside S and ', i.e. #S + #S' <H#A+ #B— 1.
The stratum of type (S1) is
0sCa ~ Cs x Cla\s)uipr} 5>

where {pt} is a one-element set, whose element represents the cluster (p;),. of points
in . Analogously, the stratum of type (S2) is

0s.5Cuap =~ Css X Ca\s,(8\8)fpr}-

Figure 7. The Eye.
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6. Universal Formula

In this section we propose a formula for an L,,-morphism 7; poly(Rd) — Dpoly(Rd)
generalizing a formula for the star product in Section 2. In order to write it, we need
to make some preparations.

6.1. ADMISSIBLE GRAPHS
DEFINITION 6.1. Admissible graph I' is a graph with labels such that

(1) the set of vertices Vris {1,...,n} U{1,...,m} where n,m € Z >, 2n+m — 2>0;
vertices from the set {1,...,n} are called vertices of the first type, vertices from
{1,...,m} are called vertices of the second type,

(2) every edge (vi,v2) € Er starts at a vertex of first type, v; € {1,...,n},

(3) for every vertex k € {1,...,n} of the first type, the set of edges

Star(k) := {(vi,n) € Er|v) =k}

starting from k, is labeled by symbols (e}, ..., e;:#Star(k))'

The labeled graphs considered in Section 2 are exactly (after the identifications
L =1, R = 2) admissible graphs such that m is equal to 2, and the number of edges
starting at every vertex of first type is also equal to 2.

6.2. DIFFERENTIAL FORMS ON CONFIGURATION SPACES

The space C, (the Eye) is homotopy equivalent to the standard circle S' ~ R/2nZ.
Moreover, one of its boundary components, the space C; = C,, is naturally identi-
fied with the standard circle S'. The other component of the boundary is the union of
two closed intervals (copies of Cj 1) with identified end points.

DEFINITION 6.2. An angle map is a smooth map ¢: Co9 — R/2nZ ~ S! such that
the restriction of ¢ to C, ~ S' is the angle measured in the anti-clockwise direction
from the vertical line, and ¢ maps the whole upper interval Cy; ~ [0, 1] of the Eye, to
a point in S'.

We will denote ¢([(x,y)]) simply by ¢(x,y) where x,y € # UR, x # p. It follows
from the definition that d¢(x,y) = 0 if x stays in R.

For example, the special map ¢" used in the formula in Section 2, is an angle map.
In the rest of the paper we can use any ¢, not necessarily harmonic.

We are now prepared for the analytic part of the universal formula. Let T" be an
admissible graph with n vertices of the first type, m vertices of the second type and
with 2n + m — 2 edges. We define the weight of graph I" by the following formula:

n 1 1
V= s (2> /a ectedde

k=1

nm
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Let us explain what is written here. The domain of integration afm is a connected
component of Z’mm which is the closure of configurations for which points
g;,1<j<m on R are placed in the increasing order g; < -+ < gp,.

The orientation of Conf,, is the product of the standard orientation on the
coordinate space R” D {(q1,...,¢m)|q; € R}, with the product of standard orienta-
tions on the plane R? (for points p; € # C R?). The group GV is even-dimensional
and naturally oriented because it acts freely and transitively on the complex manifold
. Thus, the quotient space C,,, = Conf,,,,/ G'D again carries a natural orientation.

Every edge ¢ of T defines a map from C,,, to Ca or to C;; C Ca (the forgetting
map). Here we consider inclusion t‘u in Z‘z,o as the lower interval of the Eye. The
pullback of the function ¢ by the map C,,, — Cao corresponding to edge e is
denoted by ¢,.

Finally, the ordering in the wedge product of 1-forms d¢, is fixed by enumeration
of the set of sources of edges and by the enumeration of the set of edges with a given
source.

The integral giving Wr is absolutely convergent because it is an integral of a
smooth differential form over a compact manifold with corners.

6.3. PRE-L,.-MORPHISMS ASSOCIATED WITH GRAPHS

For any admissible graph I" with n vertices of the first type, m vertices of the second
type, and 2n + m — 2 + [ edges where / € Z, we define a linear map

Ur + @ Tyoly(R) — Doty (RY)[1 + 1~ n].
This map has only one nonzero graded component (%r)y, ,, Wwhere
ki = #Star(i) — 1,i=1,...,n. If [ =0, then from %r after anti-symmetrization, we
obtain a pre-L.,-morphism.
Let y,,...,7, be polyvector fields on R’ of degrees (k; +1),...,(k,+ 1) and
fi,-..,f,m be functions on R?. We are going to write a formula for function ® on R":
Q= Ur(n® - @) Q- &fum)
The formula for ® is the sum over all configurations of indices running from 1 to d,
labeled by Er:

where @; is the product over all n + m vertices of T of certain partial derivatives of
functions f; and of coefficients of y,.

Namely, with each vertex i, 1 <i<n of the first type we associate a function y; on
R? which is a coefficient of the polyvector field y;:

Vi= (i dd @ @ 2 ! (d7)),

Here we use the identification of polyvector fields with skew-symmetric tensor fields as

SN AN — Z sgn(0)é,, @ -+ ® &, € T(RY, T2,

€L
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For each vertex j of the second type, the associated function 1//}. is defined as f;.

Now, at each vertex of graph I" we put a function on R? (i.e. y; or lﬁj—.). Also, on the
edges of graph I" there are indices I(e) which label coordinates in R?. In the next step we
put into each vertex v, instead of function y,, its partial derivative

H aI(e) l//v

ecEr,e=(x,v)

and then take the product over all vertices v of I'. The result is by definition the
summand ©;.

Construction of the function ® from the graph I', polyvector fields y; and func-
tions f;, is invariant under the action of the group of affine transformations of R?
because we contract upper and lower indices.

6.4. MAIN THEOREM FOR X = R?, AND THE PROOF

We define a pre-L.,-morphism % : Tpoly([RRd) — Dpoly([RQd) by the formula for its nth
Taylor coefficient %,,n>1 considered as a skew-symmetric polylinear map (see
Section 4.2) from & Tyoly(R?) to Dpory(RY)[1 — n):

JZ/HI:Z Z Wrx%r.

m>0TEG,

Here G, ,, denotes the set of all admissible graphs with n vertices of the first type, m
vertices in the second group and 2n + m — 2 edges, where n>=1,m>0 (and auto-
matically 2n +m — 2>0).

THEOREM 6.3. % is an L.,-morphism, and also a quasi-isomorphism.
Proof. The condition that % is an L,,-morphism (see Sections 4.3 and 3.4.2) can be
written explicitly as

So- (U A Ay ) )2 @ @) (Ui A A7) 1 @~ @) St

m—1

+Zi(%n()’1 /\"'/\Yn))(fl ®®(fzfl+l)®®ﬁn)+
i=1

+Zi(@l”*l(b)iﬂyj]/\yl /\"'/\Vn))(fl ®®ﬁn)+

i<j

1 1
+5 > WZi

k=1 k+I=n""0c€%,

£ [0, A N1 Ui N A0 | X (1 @) =0,

Here y; are polyvector fields, f; are functions, %, are homogeneous components of %
(see Section 4.1). There is a way to rewrite this formula. Namely, we define % as the
map @°(Tpoty(RY)) — Dpoty(R?)[1] which maps the generator 1 of R =~ ®@°(Tpoy (R?))
to the product m, € Dll)oly(Rd) in the algebra 4 := C®(R?). Here m4: fi @ fa—fifs is
considered as a bidifferential operator.
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The condition from above for % to be an L.,-morphism is equivalent to the
following one:

S Una((io ) Ay A AP I @+ @ fu)+
i#]

1
+Zm2i

ki 0k+i=n""" gex,

£ (W, N A © Uil A A1) (@ @ fi) = 0.

Here we use all polylinear maps %, including the case n = 0, and definitions of
brackets in Dpoly and Ty via operations o (see Section 3.4.2) and e (see Section
4.6.1). We denote the left-hand side of the expression above by (F).

U + U is not a pre-L,-morphism because it maps 0 to a nonzero point m 4. Still the
equation (F) = 0 makes sense and means that the map (% + %,) from formal Q-
manifold Tpoty (RY)[1])gormar to the formal neighborhood of point m, in the graded
vector space Dpoly(R?)[1] is Q-equivariant, where the odd vector field Q on the target is
purely quadratic and comes from the bracket on D,y (RY), forgetting the differential.

Also, the term %, comes from the unique graph I'y which was missing in the
definition of %. Namely, Ty has n = 0 vertices of the first type, m = 2 vertices of the
second type, and no edges at all. It is easy to see that Wr, = 1 and %r, = %,.

We consider the expression (F) simultaneously for all possible dimensions d. It is
clear that one can write (F) as a linear combination

Yoer-Urn @ @) (i © - @ f)
r

of expressions % for admissible graphs I' with n vertices of the first type, m vertices
of the second type, and 2n+m — 3 edges where n=>0,m>0,2n+m —3>0. We
assume that cr = £cp if graph I' is obtained from I' by a renumeration of vertices
of the first type and by a relabeling of edges in sets Star(v) (see Section 6.5 where we
discuss signs).

Coefficients cr of this linear combination are equal to certain sums with signs of
weights ¥+ associated with some other graphs I”, and of products of two such
weights. In particular, numbers cr do not depend on the dimension d in our problem.
Perhaps it is better to use here the language of rigid tensor categories, but we will not
do it.

We want to check that ¢r vanishes for each I'.

The idea is to identify cr with the integral over the boundary 86‘,,,,,1 of the closed
differential form constructed from I" as in Section 6.2, with the only difference that now
we consider graphs with 2n + m — 3 edges. The Stokes formula gives the vanishing:

/_ /\eEErdd)e = /_ d(/\f’EErd¢e) = 0
6C!‘l,r‘l1 C

nm

We are going to calculate integrals of the form A.cg.d¢, restricted to all possible
boundary strata of 8?,”,7, and prove that the total integral as above is equal to cr. In
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Section 5.2.1 we have listed two groups of boundary strata, denoted by (S1) and (S2)
and labeled by sets or pairs of sets. Thus,

0 = /_ /\L’EErd()be = Z/ _ /\L’EErd¢e + Z/ _ /\(’EErd(i)e'
acmm S 0SCn.m S,S as(s’ Cn,m

6.4.1. Case (S1)

Points p; € # for i from subset S C {1,...,n} where #S>2, move close to each
other. The integral over the stratum dsC,,, is equal to the product of an integral over
Cy,m with an integral over C,, where ny := #S, n; :=n —np + 1. The integral
vanishes by dimensional reasons unless the number of edges of I" connecting vertices
from S is equal to 2n; — 3.

There are several possibilities:

6.4.1.1. First subcase of (S1): n, = 2 (Figure 8). In this subcase, two vertices from S|
are connected exactly by one edge, which we denote by e. The integral over C, here
gives number +1 (after division by 27 coming from the formula for weights Wr). The
total integral over the boundary stratum is equal to the integral of a new graph I’
obtained from I" by the contraction of edge e. It is easy to see (up to a sign) that this
term corresponds to the first line in our expression (F), the one where the operation e
on polyvector fields appears.

6.4.1.2. Second subcase of (S1): n, =3 (Figure 9). This is the most nontrivial case.
The integral corresponding to this boundary stratum vanishes because the integral of
any product of 2n; — 3 angle forms over C,, where n, >3 vanishes, as is proven later
in Section 6.6.

6.4.2. Case(S2)

Points p; fori € Sy C {1,...,n} and points ¢; for j € S, C {1,...,m} move close to
each other and to the horizontal line R. The condition is that 2n, + m, — 2>0 and
m+m<n+m—1, where ny := #S1,m, := #S,. The corresponding stratum is

i3

Figure 8. Term corresponding to the operation e.
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Figure 9. Many points collapse together inside 7.

i~

Figure 10. Many points collapse on R, no bad edges.

isomorphic to Cy, y, X Cp,m, Where ny :=n —ny,m; = m — my + 1. The integral of
this stratum decomposes into the product of two integrals. It vanishes if the number
of edges of I' connecting vertices from S| U S, is not equal to 2ny + my — 2.

6.4.2.1. First subcase of (S2): no bad edges (Figure 10). In this subcase we assume
that there is no edge (i,j) in I" such that i € Sy,j € {l,...,n}\S;.

The integral over the boundary stratum is equal to the product Wr, x Wr, where
I is the restriction of ' to the subset S; US> C {1,...,n}U{l,...,m} = Vr, and
I'y is obtained by the contraction of all vertices in this set to a new vertex of the
second type. Our condition guarantees that I'; is an admissible graph. This corre-
sponds to the second line in (F), where the product o on polydifferential operators
appears.

6.4.2.2. Second subcase of (S2): there is a bad edge (Figure 11). Now we assume that
there is an edge (7,/) in T such that i € S},j € {1,...,n}\S|. In this case, the integral
is zero because of the condition d¢(x,y) = 0 if x stays on the line R.

The reader can wonder about what happens if, after the collapsing, the graph will
have multiple edges. Such terms do not appear in (F). Nevertheless, we ignore them
because in this case the differential form which we integrate vanishes as it contains as
a factor the square of a 1-form.

Thus, we see that we have exhausted all possibilities and get contributions of all
terms in the formula (F). We just proved that ¢r = 0 for any I', and that % is an L-
morphism.
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bad
edge ;

Figure 11. Many points collapse on R, with a bad edge.

a, a, 4, A

Figure 12. A tree with one vertex in .

6.4.3. We Finish the Proof of Theorem 6.3

In order to check that % it is a quasi-isomorphism, we should show that its com-
ponent %; coincides with %50) introduced in Section 4.6.1.1. It follows from defi-
nitions that every admissible graph with n =1 vertex of the first type and m>=0
vertices of the second type, and with m edges, is the tree in Figure 12.

The integral corresponding to this graph is (27)”/m!. The map Ur from poly-
vector fields to polydifferential operators is the one which appears in Section 4.6.1.1:

1 4
SN Ny =y sgn(o) E @@, GETRT).

‘e,

Theorem 6.3 is proven.

6.4.4. Comparison with the Formula from Section 2

The weight wr defined in Section 2 differ from Wr defined in Section 6.2 by the
factor 2"/n!. On the other hand, the bidifferential operator Br,(f;g) is 27" times
Ur(aA--- ANa)(f® g). The inverse factorial 1/n! appears in the Taylor series (see the
end of Section 4.3). Thus, we obtain the formula from Section 2.

6.5. GRADING, ORIENTATIONS, FACTORIALS, SIGNS
Taylor coefficients of % + % are maps of graded spaces
Sym” (P oL (R, AT [=K)[2]) — (Hom(4[1]*", 4[1]))[1],

where Hom denotes the internal Hom in the tensor category Graded®. We denote the
expression from above by (E). First of all, in the expression (E) each polyvector field
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7; € T(RY, A% T) appears with the shift 2 — ;. In our formula for % the same 7; gives k;
edges of the graph, and thus k; 1-forms which we have to integrate. Also, it gives two
dimensions for the integration domain Z‘nﬁm. Secondly, every function f; € A appears
with shift 1 in (E) and gives | dimension to the integration domain. We are left with
two shifts by 1 in (E) which are accounted for two dimensions of the group G'"). From
this it is clear that our formula for % is compatible with Z-grading.

Moreover, it is also clear that things responsible for various signs in our formulas:

(1) the orientation of C,,,
(2) the order in which we multiply 1-forms d¢,,
(3) Z-gradings of vector spaces in (E),

are naturally decomposed into pairs. This implies that the enumeration of the set of
vertices of I', and also the enumeration of edges in sets Star(v) for vertices v of the
first type are not really used. Thus, we see that %, is skew-symmetric.

Inverse factorials 1/(#Star(v)!) kill the summation over enumerations of sets
Star(v). The inverse factorial 1/a! in the final formula does not appear because we
consider higher derivatives which are already multiplied by n!.

The last thing to check is that in our derivation of the fact that % is an L..-
morphism using the Stokes formula, we did not loose a sign anywhere. This is a bit
hard to explain. How, for example, can one compare the standard orientation on C
with shifts by 2 in (E)? As a hint to the reader, we would like to mention that it is
very convenient to ‘place’ the resulting expression

O:=(Ur(n® - ©9,) 1 - ®fu)

at the point co on the absolute.

6.6. VANISHING OF INTEGRALS OVER C,,n>=3

In this subsection we consider the space C, of G®- equivalence classes of configu-
rations of points on the Euclidean plane. Every two indices i,/,i # j, | <i,j<n give a
forgetting map C, — C, ~ S'. We denote by d¢,; the closed 1-form on C, which is
the pullback of the standard 1-form d(angle) on the circle. We use the same notation
for the pullback of this form to Conf;,.

LEMMA 6.4. Let n=3 be an integer. The integral over C, of the product of any
2n —3 = dim(C,) closed 1-forms d¢; , o =1,...,2n—3, is equal to zero.

Proof. First of all, we identify C, with the subset C,, of Conf, consisting of con-
figurations such that the point p;, is 0 € C and p;, is on the unit circle S' C C. Also,
we rewrite the form which we integrate as

2n—3 2n—3

/\ do, ; = d¢i1:,-l A /\ d(oy,j, — b j,)-
a=1 o=2
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Let us map the space C,, onto the space C), C Conf, consisting of configurations with
pi, =0 and p; =1, applying rotations with the center at 0. Differential forms
d(ey,;, — &4, ;,) on C, are pullbacks of differential forms d¢; ; on C}. The integral of a
productof 2z — 3closed 1-formsdé¢; ;o= 1,...,2n — 3 over C, isequal to +-27 times
the integral of the product 21 — 4 closed 1-forms d¢; ; ,o=2,...,2n — 3 over C,".

The space C, is a complex manifold. We are calculating an absolutely converging
integral of the type

[ TeArez)
s
where Z, are holomorphic invertible functions on C,’ (differences between complex
coordinates of points of the configuration). We claim that it is zero because of the
general result proven in Section 6.6.1. O

6.6.1. A Trick Using Logarithms

THEOREM 6.5. Let X be a complex algebraic variety of dimension N>=1 and
Z1,...,Zyn be rational functions on X, not equal identically to zero. Let U be any
Zariski open subset of X such that functions Z, are defined and nonvanishing on U, and
U consists of smooth points. Then the integral

[ e )
U(e)

is absolutely convergent, and equal to zero.

This result seems to be new, although the main trick used in the proof is well
known. Goncharov told me that he also came to the same result in his study of mixed
Tate motives.

Proof. First of all, we claim that the differential form A2Y,d Arg(Z,) on U(C)
coincides with the form /\iﬁ d Log|Z,| (this is the trick).

We can replace d Arg(Z,) by the linear combination of a holomorphic and an anti-
holomorphic form

%(d(LogZ(x) —d(LogZ,)).

Thus, the form which we integrate over U(C) is a sum of products of holomorphic
and of anti-holomorphic forms. The summand corresponding to a product of a
nonequal number of holomorphic and of anti-holomorphic forms, vanishes identi-
cally because U(C) is a complex manifold. The conclusion is that the number of anti-
holomorphic factors in nonvanishing summands is the same for all of them, it
coincides with the complex dimension N of U(C). The same products of holomor-
phic and of anti-holomorphic forms survive in the product

2N

N
/\ dLog|Z,| = /\ % (d(Log Z,) + d(Log Z,)).

a=1 a=1
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Let us choose a compactification U of U such that U\U is a divisor with normal
crossings. If ¢ is a smooth differential form on U(C) such that coefficients of ¢ are
locally integrable on U(C), then we denote by .#(¢) corresponding differential form
on U(C) with coefficients in the space of distributions.

LEMMA 6.6. Let @ be a form on U(C) which is a linear combination of products of
Sfunctions Log|Z,| and of 1-forms d Log|Z,| where Z, € O (U) are regular invertible
functions on U. Then coefficients of o and of dw are locally L' functions on U(C).
Moreover, J(dw) = d(F(w)). Also, the integral fu(c) o is absolutely convergent and
equal to the integral fU(C) I (o).

The lemma is an elementary exercise in the theory of distributions, after passing to
local coordinates on U(C). We leave details of the proof to the reader. Also, the
statement of the lemma remains true without the condition that U\U is a divisor
with normal crossings. O

The vanishing of the integral in the theorem is clear now by the Stokes formula:

2N 2N 2N
/ /\dArg(Zx) :/ /\dLog|Za|:/7 f<d<L0g|Zl|/\dLog|Za|>)
U(C) y=1 U(C) g=1 u(c) =2

2N
:/_ d<f<L0g|Zl|/\dLog|Z%|>> =0.
u(C) o=2
O

In fact, the convergence and the vanishing of the integral [, u(e) /\fﬁ ,dLog|Z,| is a

purely geometric fact. Namely, the image of U(C) in R*¥ under the map
x — (Log|Zi(x)|,...,Log|Z>n(x)]) has finite volume and every noncritical point in
this image appears zero times, when points in the pre-image are counted with signs
arising from the comparison of canonical orientations on U(C) and R*".

6.6.2. Remark

The vanishing of the integral in Lemma 6.4. has a higher-dimensional analogue
which is crucial in the perturbative Chern—Simons theory in the dimension 3, and its
generalizations to dimensions >4 (see [30]). However, the vanishing of integrals in
dimensions >3 follows from a much simpler fact which is the existence of a geo-
metric involution making the integral to be equal to minus itself. In the present
paper, we will use several times similar arguments involving involutions.

7. Formality Conjecture for General Manifolds

In this section we establish the formality conjecture for general manifolds and not only
for open domains in R?. It turns out that that essentially all the work has been done
already. The only new analytic result is vanishing of certain integrals over configuration
spaces, analogous to Lemma 6.4.
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One can treat RY . the formal completion of vector space R? at zero, in many
respects as a usual manifold. In particular, we can define differential graded Lie alge-
bras Dpoiy (RE ) and Tpoy(RE ). The Lie algebra Wy := Vect(RE ) is the
standard Lie algebra of formal vector fields. We consider W, as a differential graded Lie
algebra (with the trivial grading and the differential equal to 0). There are natural
homomorphisms of differential graded Lie algebras:

. d . d
mr: Wq— TPOI)’(Rformal)’ mp: Wg — DPOI)’(Rformal)a

because vector fields can be considered as polyvector fields and as differential oper-
ators.
We will use the following properties of the quasi-isomorphism % from Section 6.4:

(P1) % can be defined for RY . as well,
(P2) for any ¢ € W, we have the equality

wU\(mr(&)) = mp(1(<)),

(P3) % is GL(d, R)-equivariant,

(P4) for any k=2, &,..., ¢, € W; we have the equality
U(mp(&y) @ - @mr(&)) =0,

(P5) forany k=2, ¢ € gl(d,R) C W, and for any #,,...,n;, € Tpoly(R?ormal) we have
Ui(mr($) @y @ - @) = 0.

We will construct quasi-isomorphisms from 7Ty (X) to Dpely(X) for arbitrary d-
dimensional manifold X using only properties (P1)-(P5) of the map %. Properties
(P1), (P2) and (P3) are evident, and the properties (P4), (P5) will be established later
in Sections 7.3.1.1 and 7.3.3.1.

It will be convenient to use in this section the geometric language of formal graded
manifolds instead of the algebraic language of L..-algebras. Let us fix the dimension
de N. We introduce three formal graded Q-manifolds without base points:
T,92,w" . These formal graded Q-manifolds are obtained in the usual way from
differential graded Lie algebras Tpory (RY ..1)» Dpoty(RE ..1) and W, forgetting base
points.

In Sections 7.1 and 7.2, we present two general geometric constructions which will
used in Section 7.3 for the proof of formality of Dpory (X).

7.1. FORMAL GEOMETRY (IN THE SENSE OF GELFAND AND KAZHDAN)

Let X be a smooth manifold of dimension d. We associate with X two infinite-
dimensional manifolds, X*°°" and X*T. The manifold X°°°" consists of pairs (x,f)
where x is a point of X and f'is an infinite germ of a coordinate system on X at x,

f (R?ormab 0) — (X’ X).
We consider X°°°" as a projective limit of finite-dimensional manifolds (spaces of
finite germs of coordinate systems). There is an action on X°°°" of the (pro-Lie) group
G of formal diffeomorphisms of R preserving base point 0. The natural projection
map X°°°" — X is a principal G,-bundle.
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The manifold X*" is defined as the quotient space X°°°/GL(d,R). It can be
thought of as the space of formal affine structures at points of X. The main reason to
introduce X* is that fibers of the natural projection map X*" — X are contractible.

The Lie algebra of the group Gy is a subalgebra of codimension d in W,. It consists
of formal vector fields vanishing at zero. Thus, Lie(G,) acts on X*°°". It is easy to see
that in fact the whole Lie algebra W, acts on X°°°" and is isomorphic to the tangent
space to X°°°" at each point. Formally, the infinite-dimensional manifold X°°°" looks
as a principal homogenecous space of the nonexistent group with the Lie algebra W,.

The main idea of formal geometry (see [18]) is to replace d-dimensional manifolds
by ‘principal homogeneous spaces’ of W,. Differential-geometric constructions on
X*°°" can be obtained from Lie-algebraic constructions for W,. For a while we will
work only with X*°°", and then at the end return to X*T. In terms of Lie algebras, it
corresponds to the difference between absolute and relative cohomology.

7.2. FLAT CONNECTIONS AND Q-EQUIVARIANT MAPS

Let M be a C*°-manifold (or a complex analytic manifold, or an algebraic manifold,
or a projective limit of manifolds, etc.). Denote by IITM the supermanifold which is
the total space of the tangent bundle of M endowed with the reversed parity.
Functions on the I17TM are differential forms on M. The de Rham differential d,; on
forms can be considered as an odd vector field on [17M with the square equal to 0.
Thus, I17M is a Q-manifold. It seems that the accurate notation for I[17M consid-
ered as a graded manifold should be T[1]M (the total space of the graded vector
bundle T),[1] considered as a graded manifold).

Let N — M be a bundle over a manifold M whose fibers are manifolds, or vector
spaces, etc., endowed with a flat connection V. Denote by E the pullback of this
bundle to B := I[1TM. The connection V gives a lift of the vector field Qp := dy; on B
to the vector field Qf on E. This can be done for arbitrary connection, and only for
flat connection the identity [Qf, Og] = 0 holds.

A generalization of a (nonlinear) bundle with a flat connection is a Q-equivariant
bundle whose total space and the base are Q-manifolds. In the case of graded vector
bundles over T[1]M this notion was introduced Quillen under the name of a
superconnection (see [41]). A generalization of the notion of a covariantly flat
morphism from one bundle to another is the notion of a Q-equivariant map.

DEFINITION 7.1. A flat family over Q-manifold B is a pair (p: E — B, o) where
p: E— B is a Q-equivariant bundle whose fibers are formal manifolds, and a
0: B— FEis a Q-equivariant section of this bundle.

In the case B = {point} a flat family over B is the same a formal Q-manifold with
base point. It is clear that flat families over a given Q-manifold form a category.

We apologize for the terminology. More precise name for ‘flat families’ would be
‘flat families of pointed formal manifolds’, but it is too long.
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One can define analogously flat graded families over graded Q-manifolds.
We refer the reader to a discussion of further examples of Q-manifolds in [32].

7.3. FLAT FAMILIES IN DEFORMATION QUANTIZATION

Let us return to our concrete situation. We construct in this section two flat families
over IITX (where X is a d-dimensional manifold), and a morphism between them.
This will be done in several steps.

7.3.1. Flat Families over W~

The first bundle over ¥ is trivial as a Q-equivariant bundle, 7 x #~ — ¥  but with
a nontrivial section 4. This section is not the zero section, but the graph of the Q-
equivariant map % — Z coming from the homomorphism of differential graded
Lie algebras my: Wy — Tpoy(RE ). Analogously, the second bundle is the trivial
QO-equivariant bundle & x #" — ¥~ with the section ¢4 coming from the homo-
morphism mp: Wy — Dpory(RE ).

Formulas from Section 6.4 give a Q-equivariant map %: 7 — Z.

LEMMA 7.2. The morphism (U X idy): T X W — D x W is a morphism of flat
families over W
Proof. We have to check that (% x idy ) maps one section to another, i.e. that

(U xidy)oos =ap € Maps(W',Z x ).

We compare Taylor coefficients. The linear part %, of % maps a vector field
(considered as a polyvector field) to itself, considered as a differential operator
(property (P2)). Components % (¢, ..., &) for k=2,¢ € T'(RY) = T(RY, T) van-
ish, which is the property (P4). O

7.3.1.1. Proof of the property (P4). Graphs appearing in the calculation of
Ui(&qy ..., &) have k edges, k vertices of the first type, and m vertices of the second
type, where 2k +m — 2 = k. Thus, there are no such graphs for k>3 as m is
nonnegative. The only interesting case is k = 2,m =0 which is represented in
Figure 13.

By our construction, %, restricted to vector fields is equal to the nontrivial
quadratic map

d
Em > o)) e TR, 0), =) &0 e T(R,T)
ij=1 i
with the weight
| dbundden = [ doz) ndgtan.2)
(&X) H\{z0}

where z( is an arbitrary point of #.
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Figure 13. The only graph for property (P4).

LEMMA 7.3. For arbitrary angle map the integral flf‘\{m} do(z, z0)A dop(zo, z) is equal
to zero.

Proof. We have a map Cyo—S! x S', [(x,1)]—(¢p(x,»), d(y,x)). We calculate
the integral of the pullback of the standard volume element on two-dimensional
torus. It is easy to see that the integral does not depend on the choice of map
¢: Crgo— S'. The reason is that the image of the boundary of the integration
domain 0C, in S! x S! cancels with the reflected copy of itself under the involution
(1, h2) — (¢y, ;) of the torus S'x S'. Let us assume that ¢ =¢" and
zg =0+ 1-i. The integral vanishes because the involution z+— —Z reverses the
orientation of # and preserves the form d¢(z, zo) A dd(zo, 2). O

7.3.2. Flat Families over TIT(X°°")

If X is a d-dimensional manifold, then there is a natural map of Q-manifolds (the
Maurer—Cartan form) IIT(X*°°")—#". It follows from following general reasons. If
G is a Lie group, then it acts freely by left translations on itself, and also on I17G.
The quotient Q-manifold TITG/G is equal to I1g where g = Lie(G). Thus, we have a
Q-equivariant map I17G—IIg. Analogous construction works for any principal
homogeneous space over G. We apply it to X*°°" considered as a principal homo-
geneous space for a nonexistent group with the Lie algebra g = W,,.

The pullbacks of flat families of formal manifolds over %" constructed in Section
7.3.1, are two flat families over TIT(X°°"). As Q-equivariant bundles these families
are trivial bundles

T % TIT(X)—TIT(X), & x TIT(X%)—TIT(X*).

Pullbacks of sections g5 and g4 gives sections in the bundles above. These sections
we denote again by o7 and o4. The pullback of the morphism % x idy- is also a
morphism of flat families.

7.3.3. Flat Families over TIT(X*)

Recall that X*" is the quotient space of X*°°" by the action of GL(d, R). Thus, from
functorial properties of operation I17 (= Maps([RiO‘l, 1)) follows that TIT(X?) is the
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quotient of Q-manifold IT7T(X*°°") by the action of Q-group II7T(GL(d, R)). We will
construct an action of IIT(GL(d,R)) on flat families 7 x IIT(X*°") and
Z x IIT(X*°°") over IIT(X*°°"). We claim that the morphism between these families
is invariant under the action of TIT(GL(d, R)). Flat families over TIT(X*™) will be
defined as quotient families. The morphism between them will be the quotient
morphism.

The action of IIT(GL(d,R)) on 7 and on #" is defined as follows. First of all, if G
is a Lie group with the Lie algebra g, then II7G acts Q-equivariantly on Q-manifold
[Ig, via the identification IIg = I17G/G. Analogously, if g is a subalgebra of a larger
Lie algebra g;, and an action of G on g, is given in a way compatible with the
inclusion g—g;, then II17G acts on IIg,. We apply this construction to the case
G =GL(n,R) and g, = TPOIY(R?ormal) or g, = DP01}’(IR6flormal)'

One can check easily that sections 65 and o4 over IIT(X*°") are [1T(GL(d, R))-
equivariant. Thus, we get two flat families over TT7(X?T).

The last thing we have to check is that the morphism % x idy7(xeor) of flat families

7 x IT(X*°)— G x TIT(X*)

is IIT(GL(d, R))-equivariant. After the translation of the problem to the language of
Lie algebras, we see that we should check that % is GL(d, R)-invariant (property
(P3), that is clear by our construction), and that if we substitute an element of
el(d,R) C Wy in U>,, we get zero (property (P5), see Section 7.3.3.1).

CONCLUSION. We constructed two flat families over TT7(X*") and a morphism
between them. Fibers of these families are isomorphic to .7 and to 2.

7.3.3.1. Property (P5). This is again reduces to the calculation of an integral. Let v
be a vertex of I' to which we put an element of gl(d, R). There is exactly one edge
starting at v because we put a vector field here. If there are no edges ending at v, then
the integral is zero because the domain of integration is foliated by lines along which
all forms vanish. These lines are level sets of the function ¢(z, w) where w € # LI R is
fixed and z is the point on 2 corresponding to v (see Figure 14).

If there are at least two edges ending at v, then the corresponding polydifferential
operator is equal to zero, because second derivatives of coefficients of a linear vector
field vanish.

The only relevant case is when there is only one edge starting at v, and only one
edge ending there. If these two edges connect our vertex with the same vertex of I,
then the vanishing follows from Lemma 7.3. If our vertex is connected with two
different vertices as in Figure. 15, then we apply the following two lemmas:

LEMMA 7.4. Let z| # z, € K be two distinct points on H . Then the integral
/ do(z1,2) Ade(z,z2)
ze#\{z1,22}

vanishes.
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or

Z

Figure 15. Two graphs for property (P5).

LEMMA 7.5. Let zy € ', z € R be two points on # UR. Then the integral
[ e nddle )
ze#\{z1,22}

vanishes.

Proof. One can prove analogously to Lemma 7.3 that the integral does not depend
on the choice of an angle map, and also on points z;, z». In the case of ¢ = ¢" and
both points zy,z; are pure imaginary, the vanishing follows from the anti-symmetry
of the integral under the involution z— — Z. O

7.3.4. Flat Families over X

Let us choose a section s of the bundle X*™—X. Such section always exists
because fibers of this bundle are contractible. For example, any torsion-free con-
nection V on the tangent bundle to X gives a section X— X*T. Namely, the expo-
nential map for V gives an identification of a neighborhood of each point x € X with
a neighborhood of zero in the vector space 7.X, i.e. an affine structure on X near x,
and a point of X* over x € X.

The section s defines a map of formal graded Q-manifolds TI7TX—IT7(X?*T).
After taking the pullback we get two flat families 7 wr and P over IITX and an
morphism mgr from one to another.

We claim that these two flat families admit definitions independent of s*T. Only the

morphism mar depends on s
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Namely, let us consider infinite-dimensional bundles of differential graded Lie
algebras jets, Tpoly and jets, Dpoly over X whose fibers at x € X are spaces of infinite
jets of polyvector fields or polydifferential operators at x respectively. These two
bundles carry natural flat connections (in the usual sense, not as in Section 7.2) as any
bundle of infinite jets. Thus, we have two flat families (in generalized sense) over IITX.

LEMMA 7.6. Flat families T an and D an are canonically isomorphic to flat families
described just above.

Proof. It follows from definitions that pullbacks of bundles jets, Tpoy and
jetso Dpory from X to X°°°" are canonically trivialized. The Maurer—Cartan 1-forms
on X*°°" with values in graded Lie algebras Tpory (RE 1) or Dpory (RS 1) come from
pullbacks of flat connections on bundles of infinite jets. Thus, we identified our flat
families over TT7(X*°°") with pullbacks. The same is true for X, O

7.3.5. Passing to Global Sections

If in general (p: E— B, g) is a flat family, then one can make a new formal pointed
Q-manifold:

(1—‘(E‘)B)formal7 U)'
This is an infinite-dimensional formal super manifold, the formal completion of the
space of sections of the bundle E— B at the point ¢. The structure of Q-manifold on
[(E—B) is evident because the Lie supergroup R acts on E—B.

LEMMA 7.7. Formally completed spaces of global sections of flat families T ax and
Dar a naturally quasi-isomorphic to Tpoly(X) and Dyory(X), respectively.

Proof. It is well known that if E— X is a vector bundle then de Rham cohomology
of X with coefficients in formally flat infinite-dimensional bundle jets E are con-
centrated in degree 0 and canonically isomorphic to the vector space I'(X,E).
Moreover, the natural homomorphism of complexes

(T(X, E)[0], differential = 0)— (Q*(X,jets.(E)), de Rham differential)
is quasi-isomorphism.

Using this fact, the lemma from the previous subsection, and appropriate filtra-
tions (for spectral sequences) one sees that that the natural Q-equivariant map from
the formal Q-manifold (Tpoly(X)pormarll],0) to (I'(J wr—T{1]X)¢ma» 07) (and
analogous map for Dy,ly) is @ quasi-isomorphism. O

It follows from the lemma above and the result of Section 4.6.1.1 that we have a
chain of quasi-isomorphisms

Tp01Y(X)[1]formal — r(‘aj—s"‘” - T[I}X)formal

- F(D@S"‘” - T[l}X)formal  1dpoly (X) [l]formal'

—

Thus, differential graded Lie algebras Tpory(X) and Dyory(X) are quasi-isomorphic.
The Main Theorem stated in Section 4.6.2. is proven. O



204 MAXIM KONTSEVICH

The space of sections of the bundle X*f— X is contractible. From this fact one
can conclude that the quasi-isomorphism constructed above is well-defined homo-
topically.

8. Cup Products
8.1. CUP PRODUCTS ON TANGENT COHOMOLOGY

The differential graded Lie algebras Tpoy, Dpoly and (more generally) shifted by
[1] Hochschild complexes of arbitrary associative algebras, all carry an addi-
tional structure. We do not know at the moment a definition, it should be some-
thing close to so called homotopy Gerstenhaber algebras (see [19, 20]),
although definitely not precisely this. At least, a visible part of this structure is
a commutative associative product of degree +2 on cohomology of the tangent
space to any solution of the Maurer—Cartan equation. Namely, if g is one of dif-
ferential graded Lie algebras listed above and y € (g @ m)' satisfies dy + I =0
where m is a finite-dimensional nilpotent nonunital differential graded commutative
associative algebra, the tangent space 7, is defined as complex g® m[l]
endowed with the differential d + [y, -]. Cohomology space H, of this differential is
a graded module over graded algebra H(m) (the cohomology space of m as a com-
plex). If y; and y, are two gauge equivalent solutions, then H, and H,, are (non-
canonically) isomorphic H(m)-modules.

We define now cup products for all three differential graded Lie algebras listed at
the beginning of this section. For Ty (X) the cup product is defined as the usual cup
product of polyvector fields (see Section 4.6.1). One can check directly that this cup
product is compatible with the differential d + [y,], and is a graded commutative
associative product. For the Hochschild complex of an associative algebra A, the cup
product on H, is defined in a more tricky way. It is defined on the complex by the
formula

(hUn)(a® - @ ay)
= Z i«/”—(kz—kﬁ-k‘t—ka)(ao Q-

@t (ag @ )@, @ & g, @) @ag, @+ +),

where 7' € Hom(4%(*), 4) @ (k[0] - 1®m)'™" is homogeneous component of
(y+mq®1).

It is not a trivial check that the cup product on the Hochschild complex is
compatible with differentials, and also is commutative, associative and gauge-
equivariant on the level of cohomology. Formally, we will not use this fact. The
proof'is a direct calculation with Hochschild cochains. Even if one replaces formulas
by appropriate pictures, the calculation is still quite long, about four or five pages
of tiny drawings. Alternatively, there is a simple abstract explanation using the
interpretation of the deformation theory related with the shifted Hochschild com-
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plex as a deformation theory of triangulated categories (or, better, 4.,-categories,
see [33)).

We define the cup product for D1y (X) by the restriction of formulas for the cup-
product in C(4, A).

8.2. COMPATIBILITY OF % WITH CUP PRODUCTS

THEOREM 8.1. The quasi-isomorphism U constructed in Section 6 maps the cup-
product for Tpey(X) to the cup product for Dpory(X).

Sketch of the Proof. We translate the statement of the theorem to the language of
graphs and integrals. The tangent map is given by integrals where one of vertices of
the first type is marked. This is the vertex where we put a representative ¢ for the
tangent element [7] € H,. We put copies of y (which is a polyvector field with values
in m) into all other vertices of the first type. The rule which we just described follows
directly from the Leibniz formula applied to the Taylor series for %.

Now we are interested in the behavior of the tangent map with respect to a bilinear
operation on the tangent space. It means that we now have rwo marked vertices of
the first type.

The statement of the theorem is an identity between two expressions corre-
sponding to cup products for Ty (X) and Dp,ly (X) respectively.

8.2.1. Pictures for the Cup Product in Polyvector Fields

We claim that the side of identity with the cup product for the case Tpory(X), cor-
responds to pictures of two points (say, pi,p»), where we put representatives of
elements of H, which we want to multiply, are infinitely close points on . Precisely,
this means that we integrate products of copies of the form d¢ over preimages P, of
some point o in R/2nZ ~ C, C C, with respect to the forgetting map C,,, — Cay.
It is easy to see that P, has codimension 2 in Z‘nﬁm and contains no strata Cr of
codimension 2. It implies that as a singular chain, P, is equal to the sum of closures
of noncompact hypersurfaces

Paz N aS(En,m); POL N 8S1 S (En.m)-

in boundary strata of C,,,. It is easy to see that intersections Py N Js, s,(Cy,m) are
empty and intersection P, N Js(C,.,) is nonempty iff S O {1,2}. In general pictures,
which can potentially contribute with a nonzero weight something like the one in
Figure 16.

In other words, we have a collision of several points in # including both points p;
and p,. These points should not be connected by an edge because otherwise the
integral vanishes (remember that the direction from p; to p; is fixed). Also, if
#S > 3, then the integral vanishes by Lemma 6.6. The only nontrivial case which is
left is when S = {1,2} and points p;, p, are not connected. Figure 17 represents a
nonvanishing term corresponding to the cup product in Ty (X).
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N

Figure 16. A priori picture for terms for the cup-product in Tjly.

9

Figure 17. Nonzero terms for the cup-product in Tpoly.

8.2.2. Pictures for the Cup Product in the Hochschild Complex

The cup product for D,y (X) is given by pictures where two marked points are
separated and infinitely close to R. Again, the precise definition is that we integrate
products of copies of d¢ over the pre-image Py of the point [(0,1)] € Con C Cayp.
Analysis analogous to the one from the previous subsection shows that Py ; does not
intersect any boundary stratum of Z’n‘m. Thus, as a chain of codimension 2, this
pre-image Py coincides with the union of closures of strata Cy of codimension 2
such that C7 C Py . It is easy to see that any such stratum gives pictures like the one
in Figure 18 where there is no arrow going from the circled regions outside (as in
Figure 11), and we get exactly the cup product in the tangent cohomology of the
Hochschild complex as was described above.

8.2.3. Homotopy Between Two Pictures

Choosing a path from one (limiting) configuration of two points on # to another
configuration (see Figure 19), we see that two products coincide on the level of
cohomology. O
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;pl R

Figure 18. Cup product in the Hochschild complex.

\ \
1

Figure 19. Path in the configuration space of two points in . Dashed lines are tra-
jectories of two points.

8.3. FIRST APPLICATION: DUFLO-KIRILLOV ISOMORPHISM
8.3.1. Quantization of the Kirillov—Poisson Bracket

Let g be a finite-dimensional Lie algebra over R. The dual space to g endowed with
the Kirillov—Poisson bracket is naturally a Poisson manifold (see [29]). We recall here
the formula for this bracket: if p € g* is a point and f, g are two functions on g then
the value {f, g}, is defined as (p, [df|,, dg|,]) where the differentials of functions f, g at
p are considered as elements of g~ (g*)". One can consider g* as an algebraic
Poisson manifold because coefficients of the Kirillov—Poisson bracket are linear
functions on g*.

THEOREM 8.2 The canonical quantization of the Poisson manifold g* is isomorphic
to the family of algebras Uy(g) defined as universal enveloping algebras of g endowed
with the bracket 1 , ].

Proof. In Section 6.4 we have constructed a canonical star product on the algebra
of functions on arbitrary finite-dimensional affine space endowed with a Poisson
structure. Therefore we obtain a canonical star product on C*(g*). We claim that the
product of any two polynomials on g* is a polynomial in 7 with coefficients which are
polynomials on g*. The reason is that the star product is constructed in invariant way,
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using the contraction of indices. Let us denote by € g* ® g* ® g the tensor giving the
Lie bracket on g. All nonzero natural operations Symk(g) ® Sym'(g)— Sym™(g)
which can be defined by contraction of indices with the tensor product of several
copies of f, exist only for m <k + [, and for every given m, there are only finitely many
ways to contract indices. Thus, it makes sense to put 7 equal to 1 and obtain a product
on Sym(g) = ®x=oSym*(g). We denote this product also by «.

It is easy to see that for y;,7, € g the following identity holds:
VIRV — Y2k 7= [0 7ol
Moreover, the top component of the star product which maps Symk(g) ® Sym/ (g) to

SymkH(g), coincides with the standard commutative product on Sym(g). From this
two facts one concludes that there exists a unique isomorphism of algebras

Lug: (Ug,-)—(Sym(g), »)
such that I, (y) = y for y € g, where - denotes the universal enveloping algebra of g
with the standard product.
One can easily recover variable /i in this description and get the statement of the
theorem. O

COROLLARY 8.3 The center of the universal enveloping algebra is canonically iso-
morphic as an algebra to the algebra (Sym(g))® of g-invariant polynomials on g*.
Proof. The center of %g is the Oth cohomology for the (local) Hochschild complex
of %g endowed with the standard cup product. The algebra (Sym(g))® is the Oth
cohomology of the algebra of polyvector fields on g* endowed with the differential
[, ] where a is the Kirillov—Poisson bracket. From Theorem 8.1, we conclude that
by applying the tangent map to %, we get an isomorphism of algebras. O

8.3.2. Three Isomorphisms

In the proof of Theorem 8.2 we introduced an isomorphism I, of algebras.
We denote by Ipgw the isomorphism of vector spaces Sym(g) — g (subscript
from the Poincaré—Birkhoff-Witt theorem), which is defined as

NV e — %Z%l Vs Ve
‘oex,

Analogously to the arguments above, one can see that the tangent map from
polyvector fields on g* to the Hochschild complex of the quantized algebra can be
defined for /# =1 and for polynomial coefficients. We denote by I7 its component
which maps polynomial 0-vector fields on g* (i.e. elements of Sym(g)) to 0-cochains
of the Hochschild complex of the algebra (Sym(g), ). Thus, I7 is an isomorphism of
vector spaces

I : Sym(g) — Sym(g)
and the restriction of Ir to the algebra of ad(g)"-invariant polynomials on g* is an
isomorphism of algebras
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Sym(g)* — Center((Sym(g), x)).
Combining all facts from above we get a sequence of isomorphisms of vector spaces:

Ippw

Ir [ag
Sym(g) —= Sym(g) <= %g < Sym(g).

These isomorphisms are ad(g)-invariant. Thus, one get isomorphisms

I Lag . Tppw,
(Sym(g))¥ — Center(Sym(g), x) — Center(#g) — (Sym(g))®,
where the subscript |--- denotes the restriction to subspaces of ad(g)-invariants.
Moreover, first two arrows are isomorphism of algebras. Thus, we have proved the
following theorem:

THEOREM 8.4. The restriction of the map
(Lug)~' o Ir: Sym(g)—g
to (Sym(g))® is an isomorphism of algebras (Sym(g))8— Center (%g).

8.3.3. Automorphisms of Sym(g)

Let us calculate the automorphisms Ir and I, o Ipgw of the vector space Sym(g).
We claim that both these automorphisms are translation invariant operators on the
space Sym(g) of polynomials on g*.

The algebra of translation invariant operators on the space of polynomials on a
vector space V is canonically isomorphic to the algebra of formal power series
generated by V. Generators of this algebra acts as derivations along constant vector
fields in V. Thus, any such operator can be seen as a formal power series at zero on
the dual vector space V*. We apply this formalism to the case V' = g*.

THEOREM 8.5. Operators It and I, o Ipgw respectively, are translation invariant
operators associated with formal power series S (y) and S>(y) at zero in g of the form

Sily) = exp (Z 5/ Trace (ad<y>2k>>,

k>1

S2(7) = exp (Z c5y) Trace (ad(y)zk)>,

k>1

n 2) (2 o : .
where cg ), cf‘ ), -+ and cg >, cf‘ ), -+ are two infinite sequences of real numbers indexed

by even natural numbers.
Proof. We will study separately two cases.

8.3.3.1. Isomorphism I. The isomorphism [ is given by the sum over terms corre-
sponding to admissible graphs I" with no vertices of the second type, one special
vertex v of the first type such that no edge starts at v, and such that at any other
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vertex starts with two edges and ends no more than one edge. Vertex v is the marked
vertex where we put an element of Sym(g) considered as an element of tangent
cohomology. At other vertices we put the Poisson—Kirillov bi-vector field on g*, i.e.
the tensor of commutator operation in g. As the result we get 0-differential operator,
i.e. an element of algebra Sym(g).

It is easy to see that any such graph is isomorphic to a union of copies of ‘wheels’
Wh,,, n =2 represented in Figure 20 with identified central vertex v. Figure 21 shows a
typical graph of the union.

In the integration, we may assume that the point corresponding to v is fixed, say
thatitisi- 140 € #, because group G acts simply transitively on #. First of all,
the operator Sym(g) — Sym(g) corresponding to the individual wheel Wh, is the
differential operator on g* with constant coefficients, and it corresponds to the
polynomial y — Trace (ad(y)") on g. The operator corresponding to the joint of
several wheels is the product of operators associated with individual wheels. Also,
the integral corresponding to the joint is the product of integrals. Thus, with the help
of symmetry factors, we conclude that the total operator is equal to the exponent of
the sum of operators associated with wheels Wh,,, n>2 with weights equal to cor-
responding integrals. By the symmetry argument used several times before (z — — 2),
we see that integrals corresponding to wheels with odd » vanish. The first statement
of Theorem 8.5 is proven. O

Figure 20. Wheel graph.

<

Figure 21. A union of wheels.
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8.3.3.2. Isomorphism I,z o Ipgw. The second case, for the operator Iy, o Ipgw, is a
bit more tricky. Let us write a formula for this map:

Lig o Ipgw : Y +—y %y y%---* )" (n copies of 7).

This formula defines the map unambiguously because elements (", y € g, n=>0
generate Sym(g) as a vector space.

In order to multiply several (say, m, where m>2) elements of the quantized
algebra, we should put these elements at m fixed points in increasing order on R and
take the sum over all possible graphs with m vertices of the second type of corre-
sponding expressions with appropriate weights. The result does not depend on the
position of fixed points on R because the star product is associative. Moreover, if we
calculate a power of a given element with respect to the x product, we can put all
these points in arbitrary order. It follows that we can take an average over config-
urations of m points on R where each point is random, distributed independently
from other points, with a certain probability density on R. We choose a probability
distribution on R with a smooth symmetric (under transformation x — — x) density
p(x). We assume also that p(x)dx is the restriction to R ~ C;; of a smooth 1-form
on Cy) ~ {—oco} URU {+o00}. With probability 1, our m points will be pairwise
distinct. One can check easily that the interchanging of order of integration (i.e. for
the taking mean value from the probability theory side, and for the integration of
differential forms over configuration spaces) is valid operation in our case.

The conclusion is that the mth power of an element of quantized algebra can be
calculated as a sum over all graphs with m vertices of the second type, with weights
equal to integrals over configuration spaces where we integrate products of forms d¢
and I-forms p(x;)dx; where x; are points moving along R.

The basic element of pictures in our case are ‘wheels without axles’ (Figure 22) and
the A-graph (Figure 23) which gives 0 for symmetry reasons. The typical total picture
is something like (with m = 10) the one drawn in Figure 24.

Again, it is clear from all this that the operator I, o Ipgw is a differential operator
with constant coefficients on Sym(g), equal to the exponent of the sum of operators

Figure 22. One of basic elements in the formula for y % --- % 7.
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Figure 23. Another potential basic element, it vanishes for symmetry reasons.

Figure 24. A term in the formula for y x--- xy.

corresponding to individual wheels. These operators are again proportional to
operators associated with power series on g

y — Trace (ad(y)").
By the same symmetry reasons as above we see that integrals corresponding to odd n
vanish. The second part of Theorem 8.5 is proven. O

8.3.4. Comparison with the Duflo—Kirillov Isomorphism

For the case of semi-simple g, there is so-called Harish-Chandra isomorphism be-
tween algebras (Sym(g))® and Center(#g). A. Kirillov realized that there is a way to
rewrite the Harish-Chandra isomorphism in a form which makes sense for arbitrary
finite-dimensional Lie algebra, i.e. without using the Cartan and Borel subalgebras,
the Weyl group, etc. Later M. Duflo (see [13]) proved that the map proposed by
Kirillov is an isomorphism for all finite-dimensional Lie algebras.

The explicit formula for the Duflo—Kirillov isomorphism is the following:

Ipk : (Sym(g))g ~ Center(@/(g)) Ipx = IPBW|(Sym(g))g o Istrange‘(sym(g))g?

where Igrange is an invertible translation invariant operator on Sym(g) associated
with the following formal power series on g at zero, reminiscent of the square root of
the Todd class:

B .
7 exp (;W%Trace(ad(y)zko ,
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where By, By, . .. are Bernoulli numbers. Formally, one can write the right-hand side
as det(g(ad(y))) where

eX/2 _ g—x/2
glx) = [

The fact that the Duflo—Kirillov isomorphism is an isomorphism of algebras is
highly nontrivial. All proofs known before (see [13, 21]) used certain facts about
finite-dimensional Lie algebras which follow only from the classification theory. In
particular, the fact that the analogous isomorphism for Lie superalgebras is com-
patible with products, was not know.

We claim that our isomorphism coincides with the Duflo—Kirillow isomorphism.
Let us sketch the argument. In fact, we claim that

—1
Ialg oIy = Ipgw o Istrange~

If it is not true then we get a nonzero series Err € 2R[[¢?]] such that the translation
invariant operator on Sym(g) associated with y +— Iyet(exp(Err(ad(y)))) 1VES an automor-
phism of algebra (Sym(g))®. Let 2k > 0 be the degree of the first nonvanishing term
in the expansion of Err. Then it is easy to see that the operator on Sym(g) associated
with the polynomial y — Trace(ad(y)* is a derivation when restricted to (Sym(g))®.
One can show that it is not true using Lie algebras g = gl(n) for large n. Thus, we get
a contradiction and proved that Err=0. O

As a remark, we would like to mention that if one replaces series g(x) above just
by the inverse to the square root of the series related to the Todd class

( X )*%
l—e/ 7~

then one still gets an isomorphism of algebras. The reason is that the one-parameter
group of automorphisms of Sym(g) associated with the series
y — exp(const - Trace(ad(y)))

preserves the structure of Poisson algebra on g*. This one-parameter group also acts
by automorphisms of #g. It is analogous to the Tomita—Takesaki modular auto-
morphism group for von Neumann algebras.

8.3.5. Results in Rigid Tensor Categories

Many proofs from this paper can be transported to a more general context of rigid
Q-linear tensor categories (i.e. Abelian symmetric monoidal categories with the
duality functor imitating the behavior of finite-dimensional vector spaces). We will
be very brief here.

First of all, one can formulate and prove the Poincaré-Birkhoff-Witt theorem in a
great generality, in Q-linear additive symmetric monoidal categories with infinite
sums and kernels of projectors. For example, it holds in the category of 4-modules
where A is an arbitrary commutative associative algebra over Q. Thus, we can speak
about universal enveloping algebras and the isomorphism Ipgw.
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One can define the Duflo—Kirillow morphism for Lie algebra in a k-linear rigid
tensor category where Kk is a field of characteristic zero, because Bernoulli numbers
are generality as well. It cannot hold for infinite-dimensional Lie algebras because we
use traces of products of oprators in adjoint representation.

In [28] a conjecture was made in the attempt to prove that that Duflo—Kirillov
formulas give a morphism of algebras. It seems plausible our results can help one to
prove this conjecture. Also, there is another related conjecture concerning two
products in the algebra of chord diagrams (see [4]) which seems to be a corollary of
our results.

8.4. SECOND APPLICATION: ALGEBRAS OF EXT-S

Let X be complex manifold, or a smooth algebraic variety of field k of characteristic
zero. We associate with it two graded vector spaces. The first space HT*(X) is the
direct sum (P, , H*(X,N'Tx)[~k —I]. The second space HH*(X) is the space
@,{Extéoh( Y X)((Odiag, O4giag)[—k] of Ext-groups in the category of coherent sheaves
on X x X from the sheaf of functions on the diagonal to itself. The space HH*(X)
can be thought as the Hochschild cohomology of the space X. The reason is that the
Hochschild cohomology of any algebra A4 can be also defined as Ext%_. 4 (4, 4) in
the category of bimodules.

Both spaces, HH*(X) and HT*(X) carry natural products. For HH*(X) it is the
Yoneda composition, and for HT*(X) it is the cup-product of cohomology and of
polyvector fields.

CLAIM Graded algebras HH*(X) and HT*(X) are canonically isomorphic. The
isomorphism between them is functorial with respect to étale maps.

This statement (important for the Mirror Symmetry, see [33]) is again a corollary
of Theorem 8.1. Here we will not give the proof.
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