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Abstract. I prove that every finite-dimensional Poisson manifold X admits a canonical
deformation quantization. Informally, it means that the set of equivalence classes of asso-
ciative algebras close to the algebra of functions on X is in one-to-one correspondence with the

set of equivalence classes of Poisson structures on X modulo diffeomorphisms. In fact, a more
general statement is proven (the ‘Formality conjecture’), relating the Lie superalgebra of
polyvector fields on X and the Hochschild complex of the algebra of functions on X. Coef-

ficients in explicit formulas for the deformed product can be interpreted as correlators in a
topological open string theory, although I do not explicitly use the language of functional
integrals.
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Foreword

Here is the final version of the e-print ‘Deformation quantization of Poisson man-

ifolds I’ [34] posted on the web archive as q-alg/9709040. The changes that have

been made are mostly cosmetic, I have just corrected few mistakes and tried to make

clear links between several lemmas and theorems proven in the Letter, and also

straightened out some proofs.

Here follows a guide to a short and definitely not complete additional biblio-

graphy reflecting further development of the subject.

First of all, I have to mention the work of Dmitry Tamarkin (see [45] and a nice

exposition in [23]), which gave a radically new approach to the formality theorem.

One of main ideas is to consider the Lie algebras Tpoly and Dpoly not just as dg Lie

algebras, but as homotopy Gerstenhaber algebras, which naturally explains the cup

product on the tangent space. A very important related issue here is the so-called

Deligne conjecture which says that on the Hochschild complex of an arbitrary

associative algebra there is a natural action of the dg operad of chains of the little

discs operad. The Deligne conjecture has now several proofs (see, e.g., [37, 38]), and a

generalization to higher dimensions in [27]. Unfortunately, up to now, it is not clear

how to extract explicit formulas from Tamarkin’s work, or even how to compare it

with the formality morphism from [34]. Tamarkin’s proof is based on the Etingof–

Kazhdan theorem about quantizations of Lie bialgebras, which is, in a sense, more

complicated (and less explicit) than the Formality theorem itself! It seems that the
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Etingof–Kazhdan theorem is a ‘degree zero’ part of a more general not yet established

result of the formality of the differential graded Lie algebra controlling deformations

of the symmetric algebra SymðVÞ of a vector space, considered as an associative and

coassociative bialgebra. On this Lie algebra there should be an action of the operad of

chains of little three-dimensional cube operad and its formality should be considered

as a natural generalization of the Formality theorem from [34]. Up to now there is no

explicit complex of a ‘reasonable size’, controlling deformations of bialgebras, see [40]

for some recent attempts. We should notice also that Tamarkin deduced (see [46]) the

Etingof–Kazhdan theorem from Deligne’s conjecture and the formality of the little

discs operad. Unfortunately some elements of his proof are too formal and it is not

clear how to translate them into geometry.

In [35] I have tried to perform a shortcut in Tamarkin’s proof avoiding the ref-

erence to Etingof–Kazhdan’s result. Also I proposed a new formality morphism with

complex coefficients, different from the one in [34]. Conjecturally, the new morphism

behaves in a better way than the old one with respect to the arithmetic nature of the

coefficients (weights of graphs) and should coincide with Tamarkin’s quasi-iso-

morphism up to homotopy.

In [47] another generalization of the Formality theorem was proposed. Namely,

one should consider not only the cohomological Hochschild complex, but also the

homological Hochschild complex which is a module in certain sense over the

cohomological one. The related colored operad here consists of configurations of

disjoint discs in a cylinder with two marked points on both boundary components.

This is important for the study of traces in deformation quantization, see [16] for an

approach to the quantization with traces.

In [2] the reader can find an explicit description of the signs of various terms in the

Formality theorem, which is quite a nontrivial issue.

The program of identifying graphs in the formality morphism with Feynman dia-

grams for a topological sigma model (announced in [34]) was performed by Alberto

S. Cattaneo and Giovanni Felder in a series of papers [8, 9].

In [5], a formality of the dg Lie algebra is established which is a global Dol-

beault complex for holomorphic polyvector fields on a given Calabi–Yau manifold

X. Morally, together with the Formality theorem of [34], this should mean that

the extended moduli space of triangulated categories is smooth in a formal neigh-

borhood of the derived category of coherent sheaves on X.

An alternative way for the passage from the local to global case in the Formality

theorem was described in [10], (see also an appendix in [36]).

In [36], I proposed a way to use the results of [34] in the case of algebraic varieties.

It seems that for rational Poisson varieties, deformation quantization is truly

canonical in a very strong sense. For example, I believe that for arbitrary field k

of characteristic zero there exists a certain canonical isomorphism between the

automorphism group of the k-algebra of polynomial differential operators on

an affine n-dimensional space over k and the group of polynomial symplectomor-

phisms of the standard symplectic 2n-dimensional affine space over k. This is very
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surprising because the corresponding Lie algebras of derivations are not at all

isomorphic.

Finally, repeating myself a bit, I comment on today’s state of the topics listed in

Section 0.2 in [34]:

(1) The comparison with other deformation schemes is not yet performed.

(2) This is still a wishful thinking.

(3) See conjectures in [35], and also [36].

(4) This is not done yet and results from [5] should be used as an intermediate step.

(5) Done by Cattaneo and Felder.

(6) Not yet completed, see conjectures in [47].

(7) In [36] there is a recipe for a canonical quantization for quadratic brackets, see

also the new conjecture from above about an isomorphism between two auto-

morphisms groups.

0. Introduction

In this Letter it is proven that any finite-dimensional Poisson manifold can be

canonically quantized (in the sense of deformation quantization). Informally, it means

that the set of equivalence classes of associative algebras close to algebras of functions

on manifolds is in one-to-one correspondence with the set of equivalence classes of

Poisson manifolds modulo diffeomorphisms. This is a corollary of a more general

statement, which I proposed around 1993–1994 (the Formality conjecture, see [31, 44]).

For a long time the Formality conjecture resisted all approaches. The solution

presented here uses, in an essential way, ideas of string theory. Our formulas can be

viewed as a perturbation series for a topological two-dimensional quantum field

theory coupled with gravity.

0.1. CONTENT OF THE LETTER

Section 1: an elementary introduction to the deformation quantization and precise

formulation of the main statement concerning Poisson manifolds.

Section 2: an explicit formula for the deformation quantization written in coor-

dinates.

Section 3: an introduction to the deformation theory in general, in terms of dif-

ferential graded Lie algebras. The material of this section is basically standard.

Section 4: a geometric reformulation of the theory introduced in the previous

section, in terms of odd vector fields on formal supermanifolds. In particular, we

introduce convenient notions of an L1-morphism and of a quasi-isomorphism,

which gives us a tool to identify deformation theories related with two differential

graded Lie algebras. Also in this section we state our main result, which is the

existence of a quasi-isomorphism between the Hochschild complex of the algebra of

polynomials and the graded Lie algebra of polyvector fields on affine space.

Section 5: tools for the explicit construction of the quasi-isomorphism mentioned

above. We define compactified configuration spaces related to the Lobachevsky

DEFORMATION QUANTIZATION OF POISSON MANIFOLDS 159



plane, a class of admissible graphs, differential polynomials on polyvector fields

related with graphs, and integrals over configuration spaces. Technically, the same

constructions were used in generalizations of the perturbative Chern–Simons theory

several years ago (see [30]). Compactifications of the configuration spaces are close

relatives of Fulton–MacPherson compactifications of configuration spaces in

algebraic geometry (see [17]).

Section 6: it is proven that the machinery introduced in the previous section gives a

quasi-isomorphism and establishes the Formality conjecture for affine spaces. The

proof is essentially an application of the Stokes formula, and a general result of

vanishing of certain integral associated with a collection of rational functions on a

complex algebraic variety.

Section 7: results of Section 6 are extended to the case of general manifolds. In

order to do this, we recall basic ideas of formal geometry of Gelfand and Kazhdan,

and the language of superconnections. In order to pass from the affine space to

general manifolds, we have to find a nonlinear cocycle of the Lie algebra of formal

vector fields. It turns out that such a cocycle can be almost directly constructed from

our explicit formulas. In the course of the proof, we calculate several integrals and

check their vanishing. Also, we introduce a general notion of direct image for certain

bundles of supermanifolds.

Section 8: we describe an additional structure present in the deformation theory of

associative algebras, the cup product on the tangent bundle to the super moduli space.

The isomorphism constructed in Sections 6 and 7 is compatible with this structure.

One of new results is the validity of Duflo–Kirillov formulas for Lie algebras in

general rigid tensor categories, in particular for Lie superalgebras. Another appli-

cation is an equality of two cup products in the context of algebraic geometry.

0.2. WHAT IS NOT HERE

Here is a list of further topics which are not touched in this Letter, but are worth

mentioning:

(1) the comparison of the formality with various other known constructions of star-

products, the most notorious one are by De Wilde and Lecomte and by Fedosov

for the case of symplectic manifolds (see [12, 15]), and by Etingof and Kazhdan

for Poisson–Lie groups (see [14]),

(2) a reformulation of the Formality conjecture as an existence of a natural con-

struction of a triangulated category starting from an odd symplectic super-

manifold,

(3) a study of the arithmetic nature of coefficients in our formulas, and of the

possibility to extend the main results for algebraic varieties over an arbitrary field

of characteristic zero,

(4) an application to the Mirror Symmetry, which was the original motivation for

the Formality conjecture (see [33]),
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(5) a reformulation via a Lagrangian for a quantum field theory (from [1]) which

seems to present our formulas as a perturbation expansion,

(6) a version of the formality morphism for cyclic homology,

(7) a canonical quantization of quadratic brackets, and more generally of algebraic

Poisson manifolds.

1. Deformation Quantization

1.1. STAR PRODUCTS

Let A ¼ CðX;OXÞ be the algebra over R of smooth functions on a finite-dimensional

C1-manifold X. A star product on A (see [6]) is an associative R½½�h��-linear product
on A½½�h�� given by the following formula for f; g 2 A � A½½�h��:

ðf; gÞ 7! f ? g ¼ fgþ �hB1ðf; gÞ þ �h2B2ðf; gÞ þ � � � 2 A½½�h��;
where �h is the formal variable and Bi are bidifferential operators (i.e. bilinear maps

A� A �! A which are differential operators with respect to each argument of

globally bounded order). The product of arbitrary elements of A½½�h�� is defined by the

condition of linearity over R½½�h�� and �h-adic continuity:X
nP0

fn�h
n

 !
?
X
nP0

gn�h
n

 !
:¼
X
k;lP0

fkgl�h
kþl þ

X
k;lP0;mP1

Bmðfk; glÞ�hkþlþm:

There is a natural gauge group acting on star products. This group consists of

automorphisms of A½½�h�� considered as an R½½�h��-module (i.e. linear transformations

A �! A parametrized by �h), of the following form:

f 7! fþ �hD1ðfÞ þ �h2D2ðfÞ þ � � � for f 2 A � A½½�h��;X
nP0

fn �h
n 7!

X
nP0

fn �h
n þ

X
nP0;mP1

DmðfnÞ �hnþm; for general element fð�hÞ

¼
X
nP0

fn �h
n 2 A½½�h��;

where Di : A �! A are differential operators. If Dð�hÞ ¼ 1þ
P

mP1 Dm �hm is such an

automorphism, it acts on the set of star products as

? 7! ?0; fð�hÞ ?0 gð�hÞ

:¼ Dð�hÞ Dð�hÞ�1ðfð�hÞÞ ?Dð�hÞ�1ðgð�hÞ
� �

;

fð�hÞ; gð�hÞ 2 A½½�h��:

We are interested in star products up to gauge equivalence.

1.2. FIRST APPROXIMATION: POISSON STRUCTURES

It follows from the associativity of ? that the bilinear map B1: A� A�!A satisfies

the equation
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fB1ðg; hÞ � B1ðfg; hÞ þ B1ðf; ghÞ � B1ðf; gÞh ¼ 0;

i.e. the linear map eB1: A� A �! A associated with B1 as eB1ðf� gÞ :¼ B1ðf; gÞ, is a 2-

cocycle in the cohomological Hochschild complex of algebra A (the definition of this

complex is given in Section 3.4.2).

Let us decompose B1 into the sum of the symmetric part and of the anti-symmetric

part:

B1 ¼ Bþ1 þ B�1 ; Bþ1 ðf; gÞ ¼ Bþ1 ðg; fÞ; B�1 ðf; gÞ ¼ �B�1 ðg; fÞ:
Gauge transformations

B1 7! B01; B01ðf; gÞ ¼ B1ðf; gÞ � fD1ðgÞ þD1ðfgÞ �D1ðfÞg;
where D1 is an arbitrary differential operator, affect only the symmetric part of B1,

i.e. B�1 ¼ ðB01Þ
�. One can show that the symmetric part Bþ1 can be killed by a gauge

transformation (and it is a coboundary in the Hochschild complex).

Also, one can show that the skew-symmetric part B�1 is a derivation with respect to

both functions f and g. Thus, B�1 comes from a bi-vector field a on X:

B�1 ðf; gÞ ¼ ha; df� dgi; a 2 CðX;^2TXÞ � CðX;TX � TXÞ:

An analogous fact in algebraic geometry is that the second Hochschild cohomology

group of the algebra of functions on a smooth affine algebraic variety is naturally

isomorphic to the space of bi-vector fields (see [26] and also Section 4.6.1.).

The second term Oð�h2Þ in the associativity equation f ? ðg ? hÞ ¼ ðf ? gÞ ? h implies

that a gives a Poisson structure on X,

8f; g; h ff; fg; hgg þ fg; fh; fgg þ fh; ff; ggg ¼ 0;

where

ff; gg :¼ f ? g� g ? f

�h j�h¼0
¼ 2B�1 ðf; gÞ ¼ 2ha; df� dgi:

In other words, ½a; a� ¼ 0 2 CðX;^3TXÞ, where the bracket is the Schouten–Nijenhuis

bracket on polyvector fields (see Section 4.6.1 for the definition of this bracket).

Thus, gauge equivalence classes of star products modulo Oð�h2Þ are classified by

Poisson structures on X. A priori, it is not clear whether a star product exists with the

first term equal to a given Poisson structure and whether there exists a preferred

choice of an equivalence class of star products. In this Letter we show that there is a

canonical construction of an equivalence class of star products for any Poisson

manifold.

1.3. DESCRIPTION OF QUANTIZATIONS

THEOREM 1.1. The set of gauge equivalence classes of star products on a smooth

manifold X can be naturally identified with the set of equivalence classes of Poisson

structures depending formally on �h:

a¼að�hÞ¼a1�hþa2�h
2þ���2CðX;^2TXÞ½½�h��; ½a;a�¼02CðX;^3TXÞ½½�h��
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modulo the action of the group of formal paths in the diffeomorphism group of X,

starting at the identity diffeomorphism.

Any given Poisson structure að0Þ gives a path að�hÞ :¼ að0Þ � �h and by the theorem

from above, a canonical gauge equivalence class of star products. We will not give a

proof of this theorem, as it is an immediate corollary of the Main Theorem of this

paper in Section 4.6.2 and a general result from deformation theory (see Section 4.4).

1.4. EXAMPLES

1.4.1. Moyal Product

The simplest example of a deformation quantization is the Moyal product for the

Poisson structure on Rd with constant coefficients:

a ¼
X
i;j

aij@i ^ @j; aij ¼ �aji 2 R;

where @i ¼ @=@xi is the partial derivative in the direction of coordinate xi,

i ¼ 1; � � � ; d. The formula for the Moyal product is

f ? g ¼ fgþ �h
X
i;j

aij@iðfÞ@jðgÞ þ
�h2

2

X
i;j;k;l

aijakl@i@kðfÞ@j@lðgÞ þ � � �

¼
X1
n¼0

�hn

n!

X
i1;���;in;j1;���jn

Yn
k¼1

aikjk
Yn
k¼1

@ik

 !
ðfÞ �

Yn
k¼1

@jk

 !
ðgÞ:

Here and later symbol � denotes the usual product.

1.4.2. Deformation Quantization up to the Second Order

Let a ¼
P

i;j a
ij@i ^ @j be a Poisson bracket with variable coefficients in an open

domain of Rd (i.e. aij is not a constant, but a function of coordinates), then the

following formula gives an associative product modulo Oð�h3Þ:

f ? g ¼ fgþ �h
X
i;j

aij@iðfÞ@jðgÞ þ
�h2

2

X
i;j;k;l

aijakl@i@kðfÞ@j@lðgÞþ

þ �h2

3

X
i;j;k;l

aij@jðaklÞ @i@kðfÞ@lðgÞ � @kðfÞ@i@lðgÞð Þ
 !

þOð�h3Þ:

The associativity up to the second order means that for any three functions f; g; h one

has ðf ? gÞ ? h ¼ f ? ðg ? hÞ þOð�h3Þ:

1.5. REMARKS

In general, one should consider bidifferential operators Bi with complex coefficients,

as we expect to associate by quantization self-adjoint operators in a Hilbert space to

real-valued classical observables. In this Letter we deal with purely formal algebraic
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properties of the deformation quantization and work mainly over the field R of real

numbers.

Also, it is not clear whether the natural physical counterpart for the ‘deformation

quantization’ for general Poisson brackets is the usual quantum mechanics. It is

definitely true for the case of nondegenerate brackets, i.e. for symplectic manifolds,

but our results show that in general a topological open string theory is more relevant.

2. Explicit Universal Formula

Here we propose a formula for the star product for arbitrary Poisson structure a in

an open domain of the standard coordinate space Rd. Terms of our formula

modulo Oð�h3Þ are the same as in the previous section, plus a gauge-trivial term of

order Oð�h2Þ, symmetric in f and g. Terms of the formula are certain universal

polydifferential operators applied to coefficients of the bi-vector field a and to

functions f; g. All indices corresponding to coordinates in the formula appear once

as lower indices and once as upper indices, i.e. the formula is invariant under affine

transformations of Rd.

In order to describe terms proportional to �hn for any integer nP0, we introduce a

special class Gn of oriented labeled graphs.

All graphs considered in this Letter are finite, oriented (i.e. every edge carries an

orientation), have no multiple edges and no loops. Such objects we will call here

simply graphs without adding adjectives.

DEFINITION 2.1. A graph C is a pair ðVC;ECÞ of two finite sets such that EC is a

subset of ðVC � VCÞ n VC.

Elements of VC are vertices of C, elements of EC are edges of C. If

e ¼ ðv1; v2Þ 2 EC � VC � VC is an edge, then we say that e starts at v1 and ends at v2.

For any integer nP0, we define certain set Gn of labeled graphs. We say that C
(with some additional labels) belongs to Gn if

(1) C has nþ 2 vertices and 2n edges,

(2) the set vertices VC is f1; . . . ; ng t fL;Rg, where L;R are just two symbols (capital

letters mean Left and Right),

(3) edges of C are labeled by symbols e11; e
2
1; e

1
2; e

2
2; . . . ; e

1
n; e

2
n,

(4) for every k 2 f1; . . . ; ng edges labeled by e1k and e2k start at the vertex k.

Obviously, set Gn is finite, it has ðnðnþ 1ÞÞn elements for nP1 and one element for

n ¼ 0.

We associate a bidifferential operator

BC;a : A� A �! A; A ¼ C1ðVÞ; V is an open domain in Rd:

with every labeled graphC 2 Gn, whichdependson thebi-vector field a 2 CðV;^2TVÞ,
which is not necessarily a Poisson one. We show one example, from which the general

rule should be clear. In Figure 1, we have n ¼ 3 and the list of edges is
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ðe11; e21; e12; e22; e13; e23Þ ¼ ðð1;LÞ; ð1;RÞ; ð2;RÞ; ð2; 3Þ; ð3;LÞ; ð3;RÞÞ:
In the picture of C we put independent indices 1Oi1; . . . ; i6Od on edges, instead of

labels e��. The operator BC;a corresponding to this graph is

ðf; gÞ 7!
X
i1;...;i6

ai1i2ai3i4@i4ðai5i6Þ@i1@i5ðfÞ@i2@i3@i6ðgÞ:

The general formula for the operator BC;a is

BC;aðf; gÞ :¼
X

I:EC�!f1;...;dg

Yn
k¼1

Y
e2EC;e¼ð�;kÞ

@IðeÞ

0@ 1AaIðe
1
k
ÞIðe2

k
Þ

24 35�
�

Y
e2EC;e¼ð�;LÞ

@IðeÞ

0@ 1Af�
Y

e2EC;e¼ð�;RÞ
@IðeÞ

0@ 1Ag:

In the next step, we associate a weightWC 2 R with each graph C 2 Gn. In order to

define it we need an elementary construction from hyperbolic geometry.

Let p; q; p 6¼ q be two points in the upper half-plane H ¼ fz 2 CjImðzÞ > 0g en-
dowed with the Lobachevsky metric. We denote by /hðp; qÞ 2 R=2pZ the angle at p

formed by two lines, lðp; qÞ and lðp;1Þ passing through p and q, and through p and

the point 1 on the absolute. The direction of the measurement of the angle is

counterclockwise from lðp;1Þ to lðp; qÞ. In the notation /hðp; qÞ, h stands for har-

monic (see Figure 2).

. .

.

2

3

L R

1

 

.
.

i6

i3 i5

i2

i1

i4

Figure 1. An example of a graph.

φ
pq

∞

. .

Figure 2. Angle /h.
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An easy planimetry shows that one can express angle /h(p,q) in terms of complex

numbers:

/hðp; qÞ ¼ Argððq� pÞ=ðq� pÞÞ ¼ 1

2i
log

ðq� pÞðq� pÞ
ðq� pÞðq� pÞ

� �
:

Superscript h in the notation /h refers to the fact that /hðp; qÞ is a harmonic

function in both variables p; q 2H. Function /hðp; qÞ can be defined by continuity

also in the case p; q 2H t R; p 6¼ q.

Denote by Hn the space of configurations of n numbered pairwise distinct points

on H:

Hn ¼ fðp1; . . . ; pnÞjpk 2H; pk 6¼ pl for k 6¼ lg:

Hn � Cn is a noncompact smooth 2n-dimensional manifold. We introduce orien-

tation on Hn using the natural complex structure on it.

If C 2 Gn is a graph as above, and ðp1; . . . ; pnÞ 2Hn is a configuration of points,

then we draw a copy of C on the plane R2 ’ C by assigning point pk 2H to the

vertex k; 1OkOn, point 0 2 R � C to the vertex L, and point 1 2 R � C to the

vertex R. Each edge should be drawn as a line interval in hyperbolic geometry. Every

edge e of the graph C defines an ordered pair ðp; qÞ of points onH t R, thus an angle

/h
e :¼ /hðp; qÞ. If points pi move around, we get a function /h

e on Hn with values in

R=2pZ.
We define the weight of C as

wC :¼ 1

n!ð2pÞ2n
Z
Hn

n̂

i¼1
ðd/h

e1
k
^ d/h

e2
k
Þ:

LEMMA 2.2. The integral in the definition of wC is absolutely convergent.

This lemma is a particular case of a more general statement proven in Section 6

(see the last sentence in Section 6.2).

THEOREM 2.3. Let a be a Poisson bi-vector field in a domain of Rd. The formula

f ? g :¼
X1
n¼0

�hn
X
C2Gn

wCBC;aðf; gÞ

defines an associative product. If we change coordinates, we obtain a gauge equivalent

star product.

The proof of this theorem is, in a sense, elementary, it only uses the Stokes formula

and combinatorics of admissible graphs. We will not give here the proof of this

theorem as it is a corollary of a general result proven in Section 6.
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3. Deformation Theory via Differential Graded Lie Algebras

3.1. TENSOR CATEGORIES SUPER AND GRADED

Here we make a comment about the terminology. This comment seems a bit

pedantic, but it could help in the struggle with signs in formulas.

The main idea of algebraic geometry is to replace spaces by commutative asso-

ciative rings (at least locally). One can further generalize this considering commu-

tative associative algebras in general tensor categories (see [11]). In this way, one can

imitate many constructions from algebra and differential geometry.

The fundamental example is supermathematics, i.e. mathematics in the tensor

category Superk of super vector spaces over a field k of characteristic zero (see

Chapter 3 in [39]). The category Superk is the category of Z=2Z-graded vector

spaces over k (representations of the group Z=2Z) endowed with the standard

tensor product, with the standard associativity functor, and with a modified

commutativity functor (the Koszul rule of signs). We denote by P the standard

functor Superk �! Superk changing the parity. It is given on objects by the formula

PV ¼ V� k0j1. In the sequel we will consider the standard tensor category Vectk of

vector spaces over k as the full subcategory of Superk consisting of pure even

spaces.

The basic tensor category which appears everywhere in topology and homo-

logical algebra is a full subcategory of the tensor category of Z-graded super vector

spaces. Objects of this category are infinite sums E ¼ 	n2ZE
ðnÞ such that EðnÞ is

pure even for even n, and pure odd for odd n. We will slightly abuse the language,

calling this category the category of graded vector spaces, and denote it simply by

Gradedk. We denote by En the usual k-vector space underlying the graded com-

ponent EðnÞ. If we forget about Z-grading on E 2 Objects ðGradedkÞ, then we

obtain a supervector space a
n2ZP

nEn.

Analogously, we will speak about graded manifolds. They are defined as super-

manifolds endowed with Z-grading on the sheaf of functions obeying the same

conditions on the parity as above.

The shift functor [1]:Gradedk �! Gradedk (acting from the right) is defined as

the tensor product with graded space k½1� where k½1��1 ’ k, k½1�6¼�1 ¼ 0. Its powers

are denoted by ½n�, n 2 Z. Thus, for graded space E, we have E ¼a
n2ZE

n½�n�:
Almost all results in this paper formulated for graded manifolds, graded Lie alge-

bras, etc., also hold for supermanifolds, super Lie algebras, etc.

3.2. MAURER–CARTAN EQUATION IN DIFFERENTIAL GRADED LIE ALGEBRAS

This part is essentially standard (see [22, 24, 42]).

Let g be a differential graded Lie algebra over field k of characteristic zero. Below

we recall the list of structures and axioms:

g ¼a
k2Zg

k½�k�; ½; � : gk � gl �! gkþl; d : gk �! gkþ1;
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dðdðcÞÞ¼0; d½c1;c2�¼½dc1;c2�þð�1Þc1 ½c1;dc2�; ½c2;c1�¼�ð�1Þc1�c2 ½c1;c2�;
½c1;½c2;c3��þð�1Þc3�ðc1þc2Þ½c3;½c1;c2��þð�1Þc1�ðc2þc3Þ½c2;½c3;c1��¼0:

In the formulas above, the symbols ci 2 Z mean the degrees of homogeneous

elements ci, i.e. ci 2 gci .

In other words, g is a Lie algebra in the tensor category of complexes of vector

spaces over k. If we forget about the differential and the grading on g, we obtain a

Lie superalgebra.

We associate with g a functor Defg on the category of finite-dimensional com-

mutative associative algebras over k, with values in the category of sets. First of all,

let us assume that g is a nilpotent Lie superalgebra. We define the set MCðgÞ (the set
of solutions of the Maurer–Cartan equation modulo the gauge equivalence) by the

formula

MCðgÞ :¼ c 2 g1jdcþ 1
2 ½c; c� ¼ 0

� �
=C0;

where C0 is the nilpotent group associated with the nilpotent Lie algebra g0. The

group C0 acts by affine transformations of the vector space g1. The action of C0 is

defined by the exponentiation of the infinitesimal action of its Lie algebra:

a 2 g0 7!ð _c ¼ daþ ½a; c�Þ:
Now we are ready to introduce the functor Defg. Technically, it is convenient to

define this functor on the category of finite-dimensional nilpotent commutative

associative algebras without unit. Let m be such an algebra, mdimðmÞþ1 ¼ 0. The

functor is given (on objects) by the formula

DefgðmÞ ¼MCðg�mÞ:
In the conventional approach m is the maximal ideal in a finite-dimensional Artin

algebra with unit m0 :¼ m	 k � 1: In general, one can think about commutative

associative algebras without unit as about objects dual to spaces with base points.

Algebra corresponding to a space with base point is the algebra of functions van-

ishing at the base point.

One can extend the definition of the deformation functor to algebras with linear

topology which are projective limits of nilpotent finite-dimensional algebras. For

example, in the deformation quantization we use the following algebra over R:

m :¼ �hR½½�h�� ¼ lim
 
ð�hR½�h�=�hkR½�h�Þ as k!1:

3.3. REMARK

Several authors, following a suggestion of Deligne, stressed that the set DefgðmÞ
should be considered as the set of equivalence classes of objects of certain groupoid

naturally associated with gðmÞ. Almost always in deformation theory, differential

graded Lie algebras are supported in nonnegative degrees, g<0 ¼ 0. Our principal

example here, the shifted Hochschild complex (see the next subsection), has a non-

trivial component in degree �1, when it is considered as a graded Lie algebra. The set
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DefgðmÞ in such a case has a natural structure of the set of equivalence classes for a

2-groupoid. In general, if one considers differential graded Lie algebras with com-

ponents in negative degrees, one immediately meets polycategories and nilpotent

homotopy types. Still, it is only half of the story because one cannot say anything

about gP3 using this language. Maybe, a better way is to extend the definition of the

deformation functor to the category of differential graded nilpotent commutative

associative algebras (see the last remark in Section 4.5.2).

3.4. EXAMPLES

There are many standard examples of differential graded Lie algebras and related

moduli problems.

3.4.1. Tangent Complex

Let X be a complex manifold. Define g over C as

g ¼a
k2Z

gk½�k�; gk ¼ CðX;X0;k
X � T1;0

X Þ for kP0; g<0 ¼ 0

with the differential equal to @, and the Lie bracket coming from the cup product on

@-forms and the usual Lie bracket on holomorphic vector fields.

The deformation functor related with g is the usual deformation functor for

complex structures on X. The set DefgðmÞ can be naturally identified with the set of

equivalence classes of analytic spaces eX endowed with a flat map p : eX �! Specðm0Þ,
and an identification i : eX�Specðm0Þ SpecðCÞ ’ X of the special fiber of p with X.

3.4.2. Hochschild Complex

Let A be an associative algebra over field k of characteristic zero. The graded space

of Hochschild cochains of A with coefficients in A considered as a bimodule over

itself is

C
ðA;AÞ :¼ a
kP0

CkðA;AÞ½�k�; CkðA;AÞ :¼ HomVectkðA�k;AÞ:

We define graded vector space g over k by the formula g :¼ C
ðA;AÞ½1�. Thus, we
have

g ¼a
k2Z

gk½�k�; gk :¼ HomðA�ðkþ1Þ;AÞ for kP� 1; g<ð�1Þ ¼ 0:

The differential in g is shifted by 1, the usual differential in the Hochschild com-

plex, and the Lie bracket is the Gerstenhaber bracket. The explicit formulas for the

differential and for the bracket are

ðdUÞða0 � � � � � akþ1Þ
¼ a0 � Uða1 � � � � � akþ1Þ�

�
Xk
i¼0
ð�1ÞiUða0 � � � � � ðai � aiþ1Þ � � � � � akþ1Þþ

þ ð�1ÞkUða0 � � � � � akÞ � akþ1; U 2 gk;
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and

½U1;U2� ¼ U1 � U2 � ð�1Þk1k2U2 � U1; Ui 2 gki ;

where the (nonassociative) product � is defined as

ðU1 � U2Þða0 � � � � � ak1þk2Þ

¼
Xk1
i¼0
ð�1Þik2U1ða0 � � � � � ai�1 � ðU2ðai � � � � � aiþk2ÞÞ�

� aiþk2þ1 � � � � � ak1þk2Þ:
We would also like to give here an abstract definition of the differential and of the

bracket on g. Let F denote the free coassociative graded coalgebra with counit

cogenerated by the graded vector space A½1�:F ¼a
nP1
�n ðA½1�Þ:

Graded Lie algebra g is the Lie algebra of coderivations of F in the tensor category

Gradedk. The associative product on A gives an element mA 2 g1; mA : A� A �! A

satisfying the equation ½mA;mA� ¼ 0. The differential d in g is defined as adðmAÞ.
Again, the deformation functor related to g is equivalent to the usual deformation

functor for algebraic structures. Associative products on A correspond to solutions

of the Maurer–Cartan equation in g. The set DefgðmÞ is naturally identified with the

set of equivalence classes of pairs ð eA; iÞ where eA is an associative algebra over

m0 ¼ m	 k � 1 such that eA is free as an m0-module, and i an isomorphism of k-

algebras eA�m0 k ’ A.

The cohomology of the Hochschild complex are

HHkðA;AÞ ¼ Extk
A-mod-AðA;AÞ;

the Ext-groups in the Abelian category of bimodules over A. The Hochschild

complex without shift by 1 also has a meaning in deformation theory, it also has a

canonical structure of differential graded Lie algebra, and it controls deformations of

A as a bimodule.

4. Homotopy Lie Algebras and Quasi-isomorphisms

In this section we introduce a language convenient for the homotopy theory of

differential graded Lie algebras and for the deformation theory. The ground field k

for linear algebra in our discussion is an arbitrary field of characteristic zero, unless

specified.

4.1. FORMAL MANIFOLDS

Let V be a vector space. We denote by CðVÞ the cofree cocommutative coassociative

coalgebra without counit cogenerated by V:

CðVÞ ¼a
nP1
ð�nVÞRn �a

nP1
ð�nVÞ:

Intuitively, we think about CðVÞ as about an object corresponding to a formal

manifold, possibly infinite-dimensional, with base point:

ðVformal; base point Þ :¼ ð Formal neighborhood of zero in V; 0Þ:
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The reason for this is that if V is finite-dimensional, then CðVÞ� (the dual space to

CðVÞ) is the algebra of formal power series on V vanishing at the origin.

DEFINITION 4.1 A formal pointed manifold M is an object corresponding to a

coalgebra C which is isomorphic to CðVÞ for some vector space V.

The specific isomorphism between C and CðVÞ is not considered as a part of the

data. Nevertheless, the vector space V can be reconstructed from M as the space of

primitive elements in coalgebra C. Here for a nonunital coalgebra A ¼ CðVÞ we
define primitive elements as solutions of the equation DðaÞ ¼ 0, where

D : A �! A� A is the coproduct on A.

Speaking geometrically, V is the tangent space to M at the base point. A choice of

an isomorphism between C and CðVÞ can be considered as a choice of an affine

structure on M.

If V1 and V2 are two vector spaces, then a map f between corresponding formal

pointed manifolds is defined as a homomorphism of coalgebras (a kind of the

pushforward map on distribution-valued densities supported at zero)

f� : CðV1Þ �! CðV2Þ:

By the universal property of cofree coalgebras, any such homomorphism is uniquely

specified by a linear map CðV1Þ �! V2. which is the composition of f� with the

canonical projection CðV2Þ �! V2. Homogeneous components of this map,

fðnÞ : ð�nðV1ÞÞRn �! V2; nP1

can be considered as Taylor coefficients of f. More precisely, Taylor coefficients are

defined as symmetric polylinear maps

@nf :�nðV1Þ�!V2; @nfðv1 � � �vnÞ:¼
@n

@t1 � � �@tnjt1¼���¼tn¼0
ðfðt1v1þ���þ tnvnÞÞ:

Map @nf goes through the quotient SymnðV1Þ :¼ ð�nV1ÞRn
. Linear map fðnÞ coincides

with @nf after the identification of the subspace ð�nV1ÞRn � �nV1 with the quotient

space SymnðV1Þ.
As in the usual calculus, there is the inverse mapping theorem: nonlinear map f is

invertible iff its first Taylor coefficient fð1Þ : V1 �! V2 is invertible.

Analogous definitions and statements can be made in other tensor categories,

including Superk and Gradedk.

The reader can ask why we speak about base points for formal manifolds, as such

manifolds have only one geometric point. The reason is that later we will consider

formal graded manifolds depending on formal parameters. In such a situation the

choice of the base point is a nontrivial part of the structure.
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4.2. PRE-L1-MORPHISMS

Let g1 and g2 be two graded vector spaces.

DEFINITION 4.2. A pre-L1-morphism F from g1 to g2 is a map of formal pointed

graded manifolds

F : ððg1½1�Þformal; 0Þ �! ððg2½1�Þformal; 0Þ:

Map F is defined by its Taylor coefficients which are linear maps @nF of graded

vector spaces:

@1F : g1 �! g2;

@2F : ^2ðg1Þ �! g2½�1�;

@3F : ^3ðg1Þ �! g2½�2�:

. . .

Here we use the natural isomorphism Symnðg1½1�Þ ’ ð^nðg1ÞÞ½n�. In plain terms, we

have a collection of linear maps between ordinary vector spaces

Fðk1;...;knÞ : g
k1
1 � � � � � g

kn
1 �! g

k1þ���þknþð1�nÞ
2

with the symmetry property

Fðk1;...;knÞðc1 � � � � � cnÞ ¼ �ð�1Þkikiþ1Fðk1;...;kiþ1;ki;...;knÞ

ðc1 � � � � � ciþ1 � ci � � � � � cnÞ:

One can write (slightly abusing notations)

@nFðc1 ^ � � � ^ cnÞ ¼Fðk1;...;knÞðc1 � � � � � cnÞ

for ci 2 g
ki
1 ; i ¼ 1; . . . ; n.

In the sequel, we will denote @nF simply by Fn.

4.3. L1-ALGEBRAS AND L1-MORPHISMS

Suppose that we have an odd vector field Q of degree þ1 (with respect to Z-garding)

on formal graded manifold ðg½1�formal; 0Þ such that the Taylor series for coefficients of

Q has terms of polynomial degree 1 and 2 only (i.e. linear and quadratic terms). The

first Taylor coefficient Q1 gives a linear map g �! g of degree þ1 (or, better, a map

g �! g½1�). The second coefficient Q2 : ^2g �! g gives a skew-symmetric bilinear

operation of degree 0 on g.

It is easy to see that if ½Q;Q�super ¼ 2Q2 ¼ 0, then g is a differential graded Lie

algebra, with differential Q1 and the bracket Q2, and vice-versa.

In [1], supermanifolds endowed with an odd vector field Q such that

½Q;Q�super ¼ 0, are called Q-manifolds. By analogy, we can speak about formal

graded pointed Q-manifolds.
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DEFINITION 4.3. An L1-algebra is a pair ðg;QÞ where g is a graded vector space

and Q is a coderivation of degree þ1 on the graded coalgebra Cðg½1�Þ such that

Q2 ¼ 0.

Other names for L1-algebras are ‘(strong) homotopy Lie algebras’ and ‘Sugawara

algebras’ (see, e.g., [25]).

Usually we will denote L1-algebra ðg;QÞ simply by g.

The structure of an L1-algebra on a graded vector space g is given by the infi-

nite sequence of Taylor coefficients Qi of the odd vector field Q (coderivation of

Cðg½1�Þ):

Q1 : g �! g½1�;
Q2 : ^2ðgÞ �! g;

Q3 : ^3ðgÞ �! g½�1�;
. . .

The condition Q2 ¼ 0 can be translated into an infinite sequence of quadratic con-

straints on polylinear maps Qi. First of these constraints means that Q1 is the dif-

ferential of the graded space g. Thus, ðg;Q1Þ is a complex of vector spaces over k.

The second constraint means that Q2 is a skew-symmetric bilinear operation on g,

for which Q1 satisfies the Leibniz rule. The third constraint means that Q2 satisfies

the Jacobi identity up to homotopy given by Q3, etc. As we have seen, a differential

graded Lie algebra is the same as an L1-algebra with Q3 ¼ Q4 ¼ � � � ¼ 0.

Nevertheless, we recommend to return to the geometric point of view and think in

terms of formal graded Q-manifolds. This naturally leads to the following definition:

DEFINITION 4.4. An L1-morphism between two L1-algebras g1 and g2 is a pre-

L1-morphism F such that the associated morphism F� : Cðg1½1�Þ �! Cðg2½1�Þ of
graded cocommutative coalgebras, is compatible with coderivations.

In geometric terms, an L1-morphism gives a Q-equivariant map between two

formal graded manifolds with base points.

For the case of differential graded Lie algebras, a pre-L1-morphism F is an L1-

morphism iff it satisfies the following equation for any n ¼ 1; 2 . . . and homogeneous

elements ci 2 g1:

dFnðc1 ^ c2 ^ � � � ^ cnÞ �
Xn
i¼1
�Fnðc1 ^ � � � ^ dci ^ � � � ^ cnÞ

¼ 1

2

X
k;lP1;kþl¼n

1

k!l!

X
r2Rn

�½Fkðcr1 ^ � � � ^ crkÞ;Flðcrkþ1 ^ � � � ^ crnÞ�þ

þ
X
i<j

�Fn�1ð½ci; cj� ^ c1 ^ � � � ^ ĉi ^ � � � ^ ĉj ^ � � � ^ cnÞ:
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Here are first two equations in the explicit form:

dF1ðc1Þ ¼F1ðdc1Þ;
dF2ðc1 ^ c2Þ �F2ðdc1 ^ c2Þ � ð�1Þc1F2ðc1 ^ dc2Þ
¼F1ð½c1; c2�Þ � ½F1ðc1Þ;F1ðc2Þ�:

We see that F1 is a morphism of complexes. The same is true for the case of

general L1-algebras. The graded space g for an L1-algebra ðg;QÞ can be considered

as the tensor product of k½�1� with the tangent space to the corresponding formal

graded manifold at the base point. The differential Q1 on g comes from the action of

Q on the manifold.

Let us assume that g1 and g2 are differential graded Lie algebras, and F is an L1-

morphism from g1 to g2. Any solution c 2 g11 �m of the Maurer–Cartan equation

where m is a nilpotent nonunital algebra, produces a solution of the Maurer–Cartan

equation in g12 �m:

dcþ 1
2½c;c�¼0¼)decþ 1

2½ec;ec�¼0; whereec¼P1n¼1 1
n!Fnðc^���^cÞ2g12�m:

The same formula is applicable to solutions of the Maurer–Cartan equation

depending formally on the parameter �h:

cð�hÞ ¼ c1�hþ c2�h
2 þ � � � 2 g11½½�h��;

dcð�hÞ þ 1
2½cð�hÞ; cð�hÞ� ¼ 0 ¼) d gcð�hÞ þ 1

2½gcð�hÞ; gcð�hÞ� ¼ 0:

The reason why it works is that the Maurer–Cartan equation in any differential

graded Lie algebra g can be understood as the collection of equations for the sub-

scheme of zeroes of Q in formal manifold g½1�formal:

dcþ 1
2½c; c� ¼ 0() Qjc ¼ 0:

L1-morphisms map zeroes of Q to zeroes of Q because they commute with Q. We

will see in Section 4.5.2 that L1-morphisms induce natural transformations of

deformation functors.

4.4. QUASI-ISOMORPHISMS

L1-morphisms generalize usual morphisms of differential graded Lie algebras. In

particular, the first Taylor coefficient of an L1-morphism from g1 to g2 is a mor-

phism of complexes ðg1;Q
ðg1Þ
1 Þ �! ðg2;Q

ðg2Þ
1 Þ where Q

ðgiÞ
1 are the first Taylor coeffi-

cients of vector fields QðgiÞ (which we denoted before simply by Q).

DEFINITION 4.5. A quasi-isomorphism between L1-algebras g1; g2 is an L1-

morphism F such that the first component F1 induces isomorphism between

cohomology groups of complexes ðg1;Q
ðg1Þ
1 Þ and ðg2;Q

ðg2Þ
1 Þ.

Similarly, we can define quasi-isomorphisms for formal graded pointed Q-mani-

folds, as maps inducing isomorphisms of cohomology groups of tangent spaces at
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base points (endowed with differentials which are linearizations of the vector field

Q).

The essence of the homotopy/deformation theory is contained in the following

theorem:

THEOREM 4.6. Let g1; g2 be two L1-algebras and F be an L1-morphism from g1 to

g2. Assume that F is a quasi-isomorphism. Then there exists an L1-morphism from g2
to g1 inducing the inverse isomorphism between cohomology of complexes

ðgi;Q
ðgiÞ
1 Þ i ¼ 1; 2. Also, for the case of differential graded algebras, L1-morphism F

induces an isomorphism between deformation functors associated with gi.

The first part of this theorem shows that if g1 is quasi-isomorphic to g2 then g2 is

quasi-isomorphic to g1, i.e. we get an equivalence relation.

The isomorphism between deformation functors at the second part of the theorem

is given by the formula from the last part of Section 4.3.

This theorem is essentially standard (see related results in [22, 24, 42]). Our ap-

proach consists in the translation of all relevant notions to the geometric language of

formal graded pointed Q-manifolds.

4.5. A SKETCH OF THE PROOF OF THEOREM 4.6

4.5.1. Homotopy Classification of L1-algebras

Any complex of vector spaces can be decomposed into the direct sum of a complex

with trivial differential and a contractible complex. There is an analogous decom-

position in the nonlinear case.

DEFINITION 4.7. An L1-algebra ðg;QÞ is called minimal if the first Taylor coef-

ficient Q1 of the coderivation Q vanishes.

The property of being minimal is invariant under L1-isomorphisms. Thus, one

can speak about minimal formal graded pointed Q-manifolds.

DEFINITION 4.8. An L1-algebra ðg;QÞ is called linear contractible if higher

Taylor coefficients QP2 vanish and the differential Q1 has trivial cohomology.

The property of being linear contractible is not L1-invariant. One can call formal

graded pointed Q-manifold contractible iff the corresponding differential graded

coalgebra is L1-isomorphic to a linear contractible one.

LEMMA 4.9. Any L1-algebra ðg;QÞ is L1-isomorphic to the direct sum of a minimal

and of a linear contractible L1-algebras.
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Proof. This lemma says that there exists an affine structure on a formal graded

pointed manifold in which the odd vector field Q has the form of a direct sum of a

minimal and a linear contractible one. This affine structure can be constructed by

induction in the degree of the Taylor expansion. The base of the induction is the

decomposition of the complex ðg;Q1Þ into the direct sum of a complex with van-

ishing differential and a complex with trivial cohomology. We leave details of the

proof of the lemma to the reader. (

As a side remark, we mention analogy between this lemma and a theorem from

singularity theory (see, for example, the beginning of 11.1 in [2]): for every germ f of

analytic function at critical point one can find local coordinates

ðx1; . . . ; xk; y1; . . . ; ylÞ such that f ¼ constantþQ2ðxÞ þQP3ðyÞ, where Q2 is a

nondegenerate quadratic form in x and QP3ðyÞ is a germ of a function in y such that

its Taylor expansion at y ¼ 0 starts at terms of degree at least 3.

Let g be an L1-algebra and gmin be a minimal L1-algebra as in the previous

lemma. Then there are two L1-morphisms (projection and inclusion)

ðg½1�formal; 0Þ �! ðgmin½1�formal; 0Þ; ðgmin½1�formal; 0Þ �! ðg½1�formal; 0Þ;

which are both quasi-isomorphisms. From this follows that if

ðg1½1�formal; 0Þ �! ðg2½1�formal; 0Þ

is a quasi-isomorphism then there exists a quasi-isomorphism

ðgmin
1 ½1�formal; 0Þ �! ðgmin

2 ½1�formal; 0Þ:

Any quasi-isomorphism between minimal L1-algebras is invertible, because it in-

duces an isomorphism of spaces of cogenerators (the inverse mapping theorem

mentioned at the end of Section 4.1). Thus, we proved the first part of the theorem.

Also, we see that the set equivalence classes of L1-algebras up to quasi-isomor-

phisms can be naturally identified with the set of equivalence classes of minimal L1-

algebras up to L1-isomorphisms.

4.5.2. Deformation Functors at Fixed Points of Q

The deformation functor can be defined in terms of a formal graded Q-manifold M

with base point (denoted by 0). The set of solutions of the Maurer–Cartan equation

with coefficients in a finite-dimensional nilpotent nonunital algebra m is defined as

the set of m-points of the formal scheme of zeroes of Q:

MapsððSpecðm	 k � 1Þ; base point Þ; ðZeroesðQÞ; 0ÞÞ
�MapsððSpecðm	 k � 1Þ; base point Þ; ðM; 0ÞÞ:

In terms of the coalgebra C corresponding to M this set is equal to the set of

homomorphisms of coalgebras m� �! C with the image annihilated by Q. Another

way to say this is to introduce a global (i.e. not formal) pointed Q-manifold of maps
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from ðSpecðm	 k � 1Þ, base point) to ðM; 0Þ and consider zeroes of the global vector

field Q on it.

Two solutions p0 and p1 of the Maurer–Cartan equation are called gauge equiv-

alent iff there exists (parametrized by Specðm	 k � 1Þ) polynomial family of odd

vector fields nðtÞ on M (of degree �1 with respect to Z-grading) and a polynomial

solution of the equation

dpðtÞ
dt
¼ ð½Q; nðtÞ�superÞjpðtÞ; pð0Þ ¼ p0; pð1Þ ¼ p1;

where pðtÞ is a polynomial family of m-points of formal graded manifold M with

base point.

In terms of L1-algebras, the set of polynomial paths fpðtÞg is naturally identified

with g1 �m� k½t�. Vector fields nðtÞ depending polynomially on t are not necessarily

vanishing at the base point 0.

One can check that the gauge equivalence defined above is indeed an equivalence

relation, i.e. it is transitive. For formal graded pointed manifold M we define set

DefMðmÞ as the set of gauge equivalence classes of solutions of the Maurer–Cartan

equation. The correspondence m 7! DefMðmÞ extends naturally to a functor denoted

also by DefM. Analogously, for L1-algebra g, we denote by Defg the corresponding

deformation functor.

One can easily prove the following properties:

(1) for a differential graded Lie algebra g the deformation functor defined as above

for ðg½1�formal; 0Þ, is naturally equivalent to the deformation functor defined in

Section 3.2,

(2) any L1-morphism gives a natural transformation of functors,

(3) the functor Defg1	g2 corresponding to the direct sum of two L1-algebras, is

naturally equivalent to the product of functors Defg1 �Defg2 ,

(4) the deformation functor for a linear contractible L1-algebra g is trivial, DefgðmÞ
is a one-element set for every m.

Properties (2)–(4) are just trivial, and (1) is easy. It follows from properties (1)–(4) that

if an L1-morphism of differential graded Lie algebras is a quasi-isomorphism, then it

induces an isomorphism of deformation functors. Theorem 4.6 is proven. (

We would like to notice here that in the definition of the deformation functor one

can consider just a formal pointed super Q-manifold ðM; 0Þ (i.e. not a graded one),

and m could be a finite-dimensional nilpotent differential super commutative asso-

ciative nonunital algebra.

4.6. FORMALITY

4.6.1. Two Differential Graded Lie Algebras

Let X be a smooth manifold. We associate with it two differential graded Lie alge-

bras over R. The first differential graded Lie algebra DpolyðXÞ is a subalgebra of the
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shifted Hochschild complex of the algebra A of functions on X (see Section 3.4.2).

The space Dn
polyðXÞ; nP� 1 consists of Hochschild cochains A�ðnþ1Þ �! A given by

polydifferential operators. In local coordinates ðxiÞ any element of Dn
poly can be

written as

f0 � � � � � fn 7!
X
ðI0;...;InÞ

CI0;...;InðxÞ � @I0ðf0Þ . . . @InðfnÞ;

where the sum is finite, Ik denote multi-indices, @Ik denote corresponding partial

derivatives, and fk and CI0;...;In are functions in ðxiÞ.
The second differential graded Lie algebra, TpolyðXÞ is the graded Lie algebra of

polyvector fields on X:

Tn
polyðXÞ ¼ CðX;^nþ1TXÞ; nP� 1

endowed with the standard Schouten–Nijenhuis bracket and with the differential

d :¼ 0. We recall here the formula for this bracket:

for k; lP0,

½n0 ^ � � � ^ nk; g0 ^ � � � ^ gl�

¼
Xk
i¼0

Xl
j¼0
ð�1Þiþjþk½ni; gj� ^ n0 ^ � � � ^ ni�1 ^ niþ1 ^ � � � ^

^ nk ^ g0 ^ � � � ^ gj�1 ^ gjþ1 ^ � � � ^ gl;

where ni; gj 2 CðX;TXÞ,
for kP0,

½n0 ^ � � � ^ nk; h�

¼
Xk
i¼0
ð�1ÞiniðhÞ � ðn0 ^ � � � ^ ni�1 ^ niþ1 ^ � � � ^ nkÞ;

h 2 CðX;OXÞ; ni 2 CðX;TXÞ:
In local coordinates ðx1; . . . ; xdÞ, if one replaces @=@xi by odd variables wi and

writes polyvector fields as functions in ðx1; . . . ; xdjw1; . . . ;wdÞ, the bracket is

½c1; c2� ¼ c1 
 c2 � ð�1Þk1k2c 
 c1;
where we introduce the following notation:

c1 
 c2 :¼
Xd
i¼1

@c1
@wi

@c2
@xi

; ci 2 TkiðRdÞ:

4.6.1.1. A map from TpolyðXÞ to DpolyðXÞ. We have an evident map

U
ð0Þ
1 : TpolyðXÞ �! DpolyðXÞ. It is defined, for nP0, by

U
ð0Þ
1 : ðn0 ^ � � � ^ nnÞ 7! f0� � � � � fn 7!

1

ðnþ 1Þ!
X

r2Rnþ1

sgnðrÞ
Yn
i¼0

nriðfiÞ
 !

;

and for h 2 CðX;OXÞ by h 7!ð1 7!hÞ:
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THEOREM 4.10. U
ð0Þ
1 is a quasi-isomorphism of complexes.

This is a version of the Hochschild–Kostant–Rosenberg theorem which says that,

for a smooth affine algebraic variety Y over a field k of characteristic zero, the

Hochschild cohomology of algebra OðYÞ coincides with the space

	kP0CðX;^kTYÞ½�k� of algebraic polyvector fields on Y (see [26]). The analogous

statement for C1 manifolds seems to be well known, although we were not able to

find it in the literature (e.g. in [7] a similar statement was proven for Hochschild

homology). In any case, we give here a proof.

Proof. First of all, one can immediately check that the image of U
ð0Þ
1 is annihilated

by the differential in DpolyðXÞ, i.e. that Uð0Þ1 is a morphism of complexes.

Complex DpolyðXÞ is filtered by the total degree of polydifferential operators.

Complex TpolyðXÞ endowed with zero differential also carries a very simple filtration

(just by degrees), such that U
ð0Þ
1 is compatible with filtrations. We claim that

GrðUð0Þ1 Þ : GrðTpolyðXÞÞ �! GrðDpolyðXÞÞ
is a quasi-isomorphism. In the graded complex GrðDpolyðXÞÞ associated with the

filtered complex DpolyðXÞ all components are sections of some natural vector bundles

on X, and the differential is A-linear, A ¼ C1ðXÞ. The same is true by trivial reasons

for TpolyðXÞ. Thus, we have to check that the map GrðUð0Þ1 Þ is a quasi-isomorphism

fiberwise.

Let x be a point of X and T be the tangent space at x. Principal symbols of

polydifferential operators at x lie in vector spaces

SymðTÞ � � � � � SymðTÞ ðn times; nP0Þ;
where SymðTÞ is the free polynomial algebra generated by T. It is convenient here to

identify SymðTÞ with the cofree cocommutative coassociative coalgebra with counit

cogenerated by T:

C :¼ CðTÞ 	 ðk � 1Þ�:

SymðTÞ is naturally isomorphic to the space of differential operators on T with

constant coefficients. If D is such an operator, then it defines a continuous linear

functional on the algebra of formal power series at 0 2 T:

f 7! ðDðfÞÞð0Þ;
i.e. an element of coalgebra C.

We denote by D the coproduct in coalgebra C. It is easy to see that differential in

the complex GrðDpolyðXÞÞ in the fiber at x is the following:

d : �nþ1C �! �nþ2C;

d ¼ 1� � id�nþ1C �
Xn
i¼0
ð�1Þi id� � � � � Di � � � � � idþ ð�1Þn id�nþ1C � 1�;

where Di is coproduct D applied to the ith argument.
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LEMMA 4.11. Let C be the cofree cocommutative coassociative coalgebra with counit

cogenerated by a finite-dimensional vector space T. Then the natural homomorphism of

complexes

ð^nþ1T; differential ¼ 0Þ �! ð�nþ1C; differential as above Þ

is a quasi-isomorphism.

What we consider is one of the standard complexes in homological algebra. One of

possible proofs is the following:

Proof. Let us decompose complex ð�nþ1CÞ into the infinite direct sum of sub-

complexes consisting of tensors of fixed total degrees (homogeneous components

with respect to the action of the Euler vector field on T). Our statement means in

particular that for only finitely many degrees these subcomplexes have nontrivial

cohomology. Thus, the statement of the lemma is true iff the analogous statement

holds when infinite sums are replaced by infinite products in the decomposition of

ð�nþ1CÞ. Components of the completed complex are spaces HomðA�ðnþ1Þ; kÞ, where
A is the algebra of polynomial functions on T. It is easy to see that the completed

complex calculates groups Extnþ1A�modðk; kÞ ¼ ^nþ1T, where the one-dimensional space

k is considered as an A-module (via values of polynomial at 0 2 T) and has a

resolution

� � � �! A� A �! A �! 0 �! � � �
by free A-modules. (

As a side remark, we notice that the statement of the lemma also holds if one

replaces C by CðTÞ (i.e. the free coalgebra without counit) and removes terms with 1�

from the differential. In the language of Hochschild cochains, it means that the

subcomplex of reduced cochains is quasi-isomorphic to the total Hochschild com-

plex.

The lemma implies that GrðUð0Þ1 Þ is an isomorphism fiberwise. Applying the

standard argument with spectral sequences, we obtain the proof of the theorem. (

4.6.2. Main Theorem

Unfortunately, map U
ð0Þ
1 does not commute with Lie brackets, the Schouten–Ni-

jenhuis bracket does not go to the Gerstenhaber bracket. We claim that this defect

can be cured:

MAIN THEOREM There exists an L1-morphism U from TpolyðXÞ to DpolyðXÞ such
that U1 ¼ U

ð0Þ
1 .

In other words, this theorem says that TpolyðXÞ and DpolyðXÞ are quasi-isomorphic

differential graded Lie algebras. In analogous situation in rational homotopy theory

(see [43]), a differential graded commutative algebra is called formal if it is quasi-
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isomorphic to its cohomology algebra endowed with zero differential. This explains

the title of Section 4.6.

The quasi-isomorphism U in the theorem is not canonical. We will construct

explicitly a family of quasi-isomorphisms parametrized in certain sense by a con-

tractible space. It means that our construction is canonical up to (higher) homoto-

pies.

Solutions of the Maurer–Cartan equation in TpolyðXÞ are exactly Poisson struc-

tures on X:

a 2 T1
polyðXÞ ¼ CðX;^2TXÞ; ½a; a� ¼ 0:

Any such a defines also a solution formally depending on �h,

cð�hÞ :¼ a � �h 2 T1
polyðXÞ½½�h�� ½cð�hÞ; cð�hÞ� ¼ 0:

The gauge group action is the action of the diffeomorphism group by conjugation.

Solutions of the Maurer–Cartan equation in DpolyðXÞ formally depending on �h are

star products. Thus, we obtain as a corollary that any Poisson structure on X gives a

canonical equivalence class of star products, and the Theorem 1.1.

The rest of the paper is devoted to the proof of the Main Theorem, and to the

discussion of various applications, corollaries and extensions. In Section 5, we will

make some preparations for the universal formula (Section 6) for an L1-morphism

from TpolyðXÞ to DpolyðXÞ in the case of flat space X ¼ Rd. In Section 7 we extend our

construction to general manifolds.

4.6.3. Nonuniqueness

There are other natural quasi-isomorphisms between TpolyðXÞ and DpolyðXÞ which
differ essentially from the quasi-isomorphism U constructed in Sections 6 and 7, i.e.

not even homotopic in a natural sense to U. By homotopy here we mean the fol-

lowing. L1-morphisms from one L1-algebra to another can be identified with fixed

points of Q on infinite-dimensional supermanifold of maps. Mimicking construc-

tions and definitions from Section 4.5.2, one can define an equivalence relation

(homotopy equivalence) on the set of L1-morphisms.

Firstly, the multiplicative group R� acts by automorphisms of TpolyðXÞ, multi-

plying elements c 2 TpolyðXÞk by kk for k 2 R�. Composing these automorphisms

with U one get a one-parameter family of quasi-isomorphisms. Secondly, in [31] we

constructed an exotic infinitesimal L1-automorphism of TpolyðXÞ for the case

X ¼ Rd which probably extends to general manifolds. In particular, this exotic

automorphism produces a vector field on the ‘space of Poisson structures’. The

evolution with respect to time t is described by the following non linear partial

differential equation:

da
dt

:¼
X

i;j;k;l;m;k0;l0;m0

@3aij

@xk@xl@xm
@akk

0

@xl0
@all

0

@xm0
@amm0

@xk0
ð@i ^ @jÞ;

where a ¼
P

i;j a
ijðxÞ@i ^ @j is a bi-vector field on Rd.
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A priori, we can guarantee the existence of a solution of the evolution only for

small times and real-analytic initial data. One can show that:

(1) this evolution preserves the class of (real-analytic) Poisson structures,

(2) if two Poisson structures are conjugate by a real-analytic diffeomorphism, then

the same will hold after the evolution.

Thus, our evolution operator is essentially intrinsic and does not depend on the

choice of coordinates.

Combining it with the action of R� as above we see that the Lie algebra affð1;RÞ
of infinitesimal affine transformations of the line R1 acts nontrivially on the space of

homotopy classes of quasi-isomorphisms between TpolyðXÞ and DpolyðXÞ. Maybe,

there are other exotic L1-automorphisms, this possibility is not ruled out. It is not

clear whether our quasi-isomorphism U is better than others.

5. Configuration Spaces and their Compactifications

5.1. DEFINITIONS

Let n;m be nonnegative integers satisfying the inequality 2nþmP2. We denote by

Confn;m the product of the configuration space of the upper half-plane with the

configuration space of the real line:

Confn;m ¼ fðp1; . . . ; pn; q1; . . . ; qmÞ j pi 2H; qj 2 R; pi1 6¼ pi2 for

i1 6¼ i2; qj1 6¼ qj2 for j1 6¼ j2g:

Confn;m is a smooth manifold of dimension 2nþm. The group Gð1Þ of holomor-

phic transformations of CP1 preserving the upper half-plane and the point 1, acts

on Confn;m. This group is a two-dimensional connected Lie group, isomorphic to the

group of orientation-preserving affine transformations of the real line:

Gð1Þ ¼ fz 7! azþ b j a; b 2 R; a > 0g:
It follows from the condition 2nþmP2 that the action of Gð1Þ on Confn;m is free.

The quotient space Cn;m :¼ Confn;m=G
ð1Þ is a manifold of dimension 2nþm� 2. If

P ¼ ðp1; . . . ; pn; q1; . . . ; qmÞ is a point of Confn;m, then we denote by ½P� the corre-

sponding point of Cn;m.

Analogously, we introduce simpler spaces Confn and Cn for any nP2:

Confn :¼ fðp1; . . . ; pnÞ j pi 2 C; pi 6¼ pj for i 6¼ jg;

Cn ¼ Confn=G
ð2Þ; dimðCnÞ ¼ 2n� 3;

where Gð2Þ is a three-dimensional Lie group,

Gð2Þ ¼ fz 7! azþ b j a 2 R; b 2 C; a > 0g:
We will construct compactifications Cn;m of Cn;m ( and compactifications Cn of Cn)

which are smooth manifolds with corners.

We recall that a manifold with corners (of dimension d) is defined analogously to a

usual manifold with boundary, with the only difference being that the manifold with
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corners looks locally as an open part of the closed simplicial cone ðRP0Þd. For
example, the closed hypercube ½0; 1�d is a manifold with corners. There is a natural

smooth stratification by faces of any manifold with corners.

First of all, we give one of possible formal definitions of the compactification Cn

where nP2. With any point ½ðp1; . . . ; pnÞ� of Cn, we associate a collection of nðn� 1Þ
angles with values in R=2pZ: ðArgðpi � pjÞÞi6¼j and n2ðn� 1Þ2 ratios of distances.

ðjpi � pjj=jpk � pljÞi6¼j;k6¼l:
It is easy to see that we obtain an embedding of Cn into the manifold

ðR=2pZÞnðn�1Þ � R
n2ðn�1Þ2
>0 . The space Cn is defined as the compactification of the

image of this embedding in larger manifold

ðR=2pZÞnðn�1Þ � ½0;þ1�n
2ðn�1Þ2 :

For the space Cn;m we use first its embedding to C2nþm which is defined on the level of

configuration spaces as

ðp1; . . . ; pn; q1; . . . ; qmÞ7!ðp1; . . . ; pn; p1; . . . ; pn; q1; . . . ; qmÞ
and then compactify the image in C2nþm. The result is by definition the compactified

space Cn;m.

One can show that open strata of Cn;m are naturally isomorphic to products of

manifolds of type Cn0;m0 and Cn0 . In the next subsection we will describe explicitly

Cn;m as a manifold with corners.

There is a natural action of the permutation group Rn on Cn, and also of Rn � Rm

on Cn;m. This gives us a possibility to define spaces CA and CA;B for finite sets A;B

such that#AP2 or 2#Aþ#BP2, respectively. If A0 ,!A and B0 ,!B are inclusions

of sets, then there are natural fibrations (forgetting maps) CA �! CA0 and

CA;B �! CA0;B0 .

5.2. LOOKING THROUGH A MAGNIFYING GLASS

From the definition of the compactification given in the previous subsection, it is not

clear what is exactly the point of the compactified space. We are going to explain an

intuitive idea underlying a direct construction of the compactification Cn;m as a

manifold with corners. For more formal treatment of compactifications of config-

uration spaces, we refer the reader to [17] (for the case of smooth algebraic varieties).

Let us try to look through a magnifying glass, or better through a microscope with

arbitrary magnification, at different parts of the picture formed by points on

H [ R � C and by the line R � C. Here we use Euclidean geometry on C ’ R2

instead of Lobachevsky geometry.

Before doing this, let us first consider the case of a configuration on R2 ’ C, i.e.

without the horizontal line R � C. We say that the configuration ðp1; . . . ; pnÞ is in

standard position iff

(1) the diameter of the set fp1; . . . ; png is equal to 1, and

(2) the center of the minimal circle containing fp1; . . . ; png is 0 2 C.
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It is clear that any configuration of n pairwise distinct points in the case nP2 can

be uniquely put to the standard position by a unique element of group Gð2Þ. The set

of configurations in the standard position gives a continuous section scont of the

natural projection map Confn �! Cn.

For a configuration in the standard position there could be several domains where

we will need magnification in order to see details. These domains are those where at

least two points of the configuration come too close to each other.

After an appropriate magnification of any such domain, we again get a stable

configuration (i.e. the number of points there are at least 2). Then we can put it again

in the standard position and repeat the procedure.

In such a way, we get an oriented tree T with one root, and leaves numbered from

1 to n. For example, the configuration in Figure 3 gives the tree in Figure 4.

For every vertex of tree T except leaves, we denote by StarðvÞ the set of edges

starting at v. For example, in the figure from above the set StarðrootÞ has three

elements, and sets StarðvÞ for other three vertices all have two elements.

Points in Cn close to one which we consider, can be parametrized by the following

data:

(a) for each vertex v of T except leaves, a configuration cv in the standard position of

points labeled by the set StarðvÞ,

. ..

. ..

2

1

3

4

5
6

Figure 3. Configuration of points close to the boundary of the compactified configura-
tion space.

. . .
.

.

1

root

2

.
3

4

5
6. ..

Figure 4. Tree corresponding the limiting point in the configuration space.
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(b) for each vertex v except leaves and the root of the tree, the scale sv > 0 with

which we should put a copy of cv instead of the corresponding point pv 2 C on

configuration cu where u 2 VT is such that ðu; vÞ 2 ET.

More precisely, we act on the configuration cv by the element ðz 7! svzþ pvÞ of Gð2Þ.
Numbers sv are small but positive. The compactification Cn is achieved by for-

mally permitting some of scales sv to be equal to 0.

In this way we get a compact topological manifold with corners, with strata CT

labeled by trees T (with leaves numbered from 1 to n). Each stratum CT is canoni-

cally isomorphic to the product
Q

v CStarðvÞ over all vertices v except leaves.

In the above description points of CT correspond to collections of configurations

with all scales sv equal to zero. Let us repeat: as a set Cn coincides withG
trees T

Y
v2VTnfleavesg

CStarðvÞ:

In order to introduce a smooth structure on Cn, we should choose a Rn-equivariant

smooth section ssmooth of the projection map Confn �! Cn instead of the section scont

given by configurations in the standard position. Local coordinates on Cn near a

given point lying in stratum CT are scales sv 2 RP0 close to zero and local coordi-

nates in manifolds CStarðvÞ for all v 2 VT n fleavesg. The resulting structure of a

smooth manifold with corners does not depend on the choice of the section ssmooth.

The case of configurations of points on H [ R is not much harder. First of all we

say that a finite nonempty set S of points on H [ R is in the standard position iff

(1) the projection of the convex hull of S to the horizontal line R � C ’ R2 is either

the one-point set f0g, or it is an interval with the center at 0,

(2) the maximum of the diameter of S and of the distance from S to R is equal to 1.

It is easy to see that for 2nþmP2 (the stable case) any configuration of n points on

H and m points on R can be put uniquely in standard position by an element of Gð1Þ.

In order to get a smooth structure, we repeat the same arguments as for the case of

manifolds Cn.

Domains where we will need magnification in order to see details, are now of two

types. The first case is when at least two points of the configuration come too close to

each other. We want to know whether what we see is a single point or a collection of

several points. The second possibility is when a point on H comes too close to R.

Here we also want to decide whether what we see is a point (or points) onH or on R.

If the domain which we want to magnify is close to R, then after magnification we

again get a stable configuration which we can put into the standard position. If the

domain is inside H, then after magnification we get a picture without the horizontal

line in it, and we are back in the situation concerning Cn0 for n
0On.

It is instructional to draw low-dimensional spaces Cn;m. The simplest one,

C1;0 ¼ C1;0 is just a point. The space C0;2 ¼ C0;2 is a two-element set. The space C1;1

is an open interval, and its closure C1;1 is a closed interval (the real line R � C is

dashed in Figure 5).
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The space C2;0 is diffeomorphic to H n f0þ 1 � ig. The reason is that by the action

of Gð1Þ we can put point p1 to the position i ¼
ffiffiffiffiffiffiffi
�1
p

2H. The closure C2;0 can be

drawn as in Figure 6 or as in Figure 7.

Forgetting maps (see the end of Section 5.1) extend naturally to smooth maps of

compactified spaces.

5.2.1. Boundary Strata

We give here a list of all strata in CA;B of codimension 1:

(S1) points pi 2H for i 2 S � A; where #SP 2, move close to each other but far

from R,

(S2) points pi 2H for i 2 S � A and points qj 2 R for j 2 S0 � B, where

2#Sþ#S0P 2, all move close to each other and to R, with at least one point

left outside S and S0, i.e. #Sþ#S0O#Aþ#B� 1.

The stratum of type (S1) is

@SCA;B ’ CS � CðAnSÞtfptg;B;

where fptg is a one-element set, whose element represents the cluster ðpiÞi2S of points

in H. Analogously, the stratum of type (S2) is

@S;S0CA;B ’ CS;S0 � CAnS;ðBnS0Þtfptg:

. .
0 = q

1

~~. ..

Figure 5. Space C1;1 homeomorphic to an interval.

.

p
1

=i

.
.

Figure 6. Space C2;0.

..

Figure 7. The Eye.
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6. Universal Formula

In this section we propose a formula for an L1-morphism TpolyðRdÞ ! DpolyðRdÞ
generalizing a formula for the star product in Section 2. In order to write it, we need

to make some preparations.

6.1. ADMISSIBLE GRAPHS

DEFINITION 6.1. Admissible graph C is a graph with labels such that

(1) the set of vertices VC is f1; . . . ; ng t f1; . . . ;mg where n;m 2 ZP0, 2nþm� 2P0;

vertices from the set f1; . . . ; ng are called vertices of the first type, vertices from

f1; . . . ;mg are called vertices of the second type,

(2) every edge ðv1; v2Þ 2 EC starts at a vertex of first type, v1 2 f1; . . . ; ng,
(3) for every vertex k 2 f1; . . . ; ng of the first type, the set of edges

StarðkÞ :¼ fðv1; v2Þ 2 ECj v1 ¼ kg

starting from k, is labeled by symbols ðe1k; . . . ; e
#StarðkÞ
k Þ.

The labeled graphs considered in Section 2 are exactly (after the identifications

L ¼ 1;R ¼ 2) admissible graphs such that m is equal to 2, and the number of edges

starting at every vertex of first type is also equal to 2.

6.2. DIFFERENTIAL FORMS ON CONFIGURATION SPACES

The space C2;0 (the Eye) is homotopy equivalent to the standard circle S1 ’ R=2pZ.
Moreover, one of its boundary components, the space C2 ¼ C2, is naturally identi-

fied with the standard circle S1. The other component of the boundary is the union of

two closed intervals (copies of C1;1) with identified end points.

DEFINITION 6.2. An angle map is a smooth map / : C2;0 ! R=2pZ ’ S1 such that

the restriction of / to C2 ’ S1 is the angle measured in the anti-clockwise direction

from the vertical line, and /maps the whole upper interval C1;1 ’ ½0; 1� of the Eye, to
a point in S1.

We will denote /ð½ðx; yÞ�Þ simply by /ðx; yÞ where x; y 2H t R; x 6¼ y. It follows

from the definition that d/ðx; yÞ ¼ 0 if x stays in R.

For example, the special map /h used in the formula in Section 2, is an angle map.

In the rest of the paper we can use any /, not necessarily harmonic.

We are now prepared for the analytic part of the universal formula. Let C be an

admissible graph with n vertices of the first type, m vertices of the second type and

with 2nþm� 2 edges. We define the weight of graph C by the following formula:

WC :¼
Yn
k¼1

1

ð#StarðkÞÞ!
1

ð2pÞ2nþm�2
Z
C
þ
n;m

^e2ECd/e:

DEFORMATION QUANTIZATION OF POISSON MANIFOLDS 187



Let us explain what is written here. The domain of integration C
þ
n;m is a connected

component of Cn;m which is the closure of configurations for which points

qj; 1OjOm on R are placed in the increasing order q1 < � � � < qm:

The orientation of Confn;m is the product of the standard orientation on the

coordinate space Rm 
 fðq1; . . . ; qmÞjqj 2 Rg, with the product of standard orienta-

tions on the plane R2 (for points pi 2H � R2). The group Gð1Þ is even-dimensional

and naturally oriented because it acts freely and transitively on the complex manifold

H. Thus, the quotient space Cn;m ¼ Confn;m=G
ð1Þ again carries a natural orientation.

Every edge e of C defines a map from Cn;m to C2;0 or to C1;1 � C2;0 (the forgetting

map). Here we consider inclusion C1;1 in C2;0 as the lower interval of the Eye. The

pullback of the function / by the map Cn;m ! C2;0 corresponding to edge e is

denoted by /e.

Finally, the ordering in the wedge product of 1-forms d/e is fixed by enumeration

of the set of sources of edges and by the enumeration of the set of edges with a given

source.

The integral giving WC is absolutely convergent because it is an integral of a

smooth differential form over a compact manifold with corners.

6.3. PRE-L1-MORPHISMS ASSOCIATED WITH GRAPHS

For any admissible graph C with n vertices of the first type, m vertices of the second

type, and 2nþm� 2þ l edges where l 2 Z, we define a linear map

UC : �nTpolyðRdÞ ! DpolyðRdÞ½1þ l� n�:
This map has only one nonzero graded component ðUCÞðk1;...;knÞ where

ki ¼ #StarðiÞ � 1; i ¼ 1; . . . ; n. If l ¼ 0, then from UC after anti-symmetrization, we

obtain a pre-L1-morphism.

Let c1; . . . ; cn be polyvector fields on Rd of degrees ðk1 þ 1Þ; . . . ; ðkn þ 1Þ and

f1; . . . ; fm be functions on Rd. We are going to write a formula for function U on Rn:

U :¼ UCðc1 � � � � � cnÞð Þðf1 � � � � � fmÞ:
The formula for U is the sum over all configurations of indices running from 1 to d,

labeled by EC:

U ¼
X

I:EC!f1;...;dg
UI;

where UI is the product over all nþm vertices of C of certain partial derivatives of

functions fj and of coefficients of ci.
Namely, with each vertex i; 1OiOn of the first type we associate a function wi on

Rd which is a coefficient of the polyvector field ci:

wi ¼ hci; dxIðe
1
i Þ � � � � � dxI e

kiþ1
i

� 	
i:

Here we use the identification of polyvector fields with skew-symmetric tensor fields as

n1 ^ � � � ^ nkþ1 !
X

r2Rkþ1

sgnðrÞnr1 � � � � � nrkþ1 2 CðRd;T�ðkþ1ÞÞ:
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For each vertex j of the second type, the associated function wj is defined as fj.

Now, at each vertex of graph C we put a function on Rd (i.e. wi or wj). Also, on the

edges of graphC there are indices IðeÞwhich label coordinates inRd. In the next stepwe

put into each vertex v, instead of function wv, its partial derivativeY
e2EC;e¼ð�;vÞ

@IðeÞ

0@ 1Awv

and then take the product over all vertices v of C. The result is by definition the

summand UI.

Construction of the function U from the graph C, polyvector fields ci and func-

tions fj, is invariant under the action of the group of affine transformations of Rd

because we contract upper and lower indices.

6.4. MAIN THEOREM FOR X ¼ Rd
, AND THE PROOF

We define a pre-L1-morphism U : TpolyðRdÞ ! DpolyðRdÞ by the formula for its nth

Taylor coefficient Un; nP1 considered as a skew-symmetric polylinear map (see

Section 4.2) from �nTpolyðRdÞ to DpolyðRdÞ½1� n�:

Un :¼
X
mP0

X
C2Gn;m

WC �UC:

Here Gn;m denotes the set of all admissible graphs with n vertices of the first type, m

vertices in the second group and 2nþm� 2 edges, where nP1;mP0 (and auto-

matically 2nþm� 2P0).

THEOREM 6.3. U is an L1-morphism, and also a quasi-isomorphism.

Proof. The condition that U is an L1-morphism (see Sections 4.3 and 3.4.2) can be

written explicitly as

f1 � Unðc1^���^cnÞð Þðf2����� fmÞ� Unðc1^���^cnÞð Þðf1����� fm�1Þ � fmþ

þ
Xm�1
i¼1
� Unðc1^���^cnÞð Þðf1�����ðfifiþ1Þ����� fmÞþ

þ
X
i<j

� Un�1ð½ci;cj�^c1^���^cnÞ
� 	

ðf1����� fmÞþ

þ1

2

X
k;lP1;kþl¼n

1

k!l!

X
r2Rn

�

� Ukðcr1 ^���^crkÞ;Ulðcrkþ1 ^���^crnÞ
h i

�ðf1����� fmÞ¼0:

Here ci are polyvector fields, fi are functions, Un are homogeneous components of U

(see Section 4.1). There is a way to rewrite this formula. Namely, we define U0 as the

map �0ðTpolyðRdÞÞ ! DpolyðRdÞ½1� which maps the generator 1 of R ’ �0ðTpolyðRdÞÞ
to the product mA 2 D1

polyðRdÞ in the algebra A :¼ C1ðRdÞ. Here mA : f1 � f2 7!f1f2 is

considered as a bidifferential operator.
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The condition from above for U to be an L1-morphism is equivalent to the

following one:X
i6¼j
� Un�1ððci 
 cjÞ ^ c1 ^ � � � ^ cnÞ
� 	

ðf1 � � � � � fmÞþ

þ
X

k;lP0;kþl¼n

1

k!l!

X
r2Rn

�

� Ukðcr1 ^ � � � ^ crkÞ � Ulðcrkþ1 ^ � � � ^ crnÞ
� �

ðf1 � � � � � fmÞ ¼ 0:

Here we use all polylinear maps Un including the case n ¼ 0, and definitions of

brackets in Dpoly and Tpoly via operations � (see Section 3.4.2) and 
 (see Section

4.6.1). We denote the left-hand side of the expression above by ðFÞ.
UþU0 is not a pre-L1-morphism because it maps 0 to a nonzero pointmA. Still the

equation ðFÞ ¼ 0 makes sense and means that the map ðUþU0Þ from formal Q-

manifold TpolyðRdÞ½1�Þformal to the formal neighborhood of point mA in the graded

vector spaceDpolyðRdÞ½1� isQ-equivariant, where the odd vector fieldQ on the target is

purely quadratic and comes from the bracket onDpolyðRdÞ, forgetting the differential.
Also, the term U0 comes from the unique graph C0 which was missing in the

definition of U. Namely, C0 has n ¼ 0 vertices of the first type, m ¼ 2 vertices of the

second type, and no edges at all. It is easy to see that WC0
¼ 1 and UC0

¼ U0.

We consider the expression ðFÞ simultaneously for all possible dimensions d. It is

clear that one can write ðFÞ as a linear combinationX
C

cC �UC c1 � � � � � cnð Þðf1 � � � � � fmÞ

of expressions UC for admissible graphs C with n vertices of the first type, m vertices

of the second type, and 2nþm� 3 edges where nP0;mP0; 2nþm� 3P0. We

assume that cC ¼ �cC0 if graph C0 is obtained from C by a renumeration of vertices

of the first type and by a relabeling of edges in sets StarðvÞ (see Section 6.5 where we

discuss signs).

Coefficients cC of this linear combination are equal to certain sums with signs of

weights WC0 associated with some other graphs C0, and of products of two such

weights. In particular, numbers cC do not depend on the dimension d in our problem.

Perhaps it is better to use here the language of rigid tensor categories, but we will not

do it.

We want to check that cC vanishes for each C.
The idea is to identify cC with the integral over the boundary @Cn;m of the closed

differential form constructed fromC as in Section 6.2, with the only difference that now

we consider graphs with 2nþm� 3 edges. The Stokes formula gives the vanishing:Z
@Cn;m

^e2ECd/e ¼
Z
Cn;m

d ^e2ECd/eð Þ ¼ 0:

We are going to calculate integrals of the form ^e2ECd/e restricted to all possible

boundary strata of @Cn;m, and prove that the total integral as above is equal to cC. In
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Section 5.2.1 we have listed two groups of boundary strata, denoted by (S1) and (S2)

and labeled by sets or pairs of sets. Thus,

0 ¼
Z
@Cn;m

^e2ECd/e ¼
X
S

Z
@SCn;m

^e2ECd/e þ
X
S;S0

Z
@S;S0Cn;m

^e2ECd/e:

6.4.1. Case (S1)

Points pi 2H for i from subset S � f1; . . . ; ng where #SP2, move close to each

other. The integral over the stratum @SCn;m is equal to the product of an integral over

Cn1;m with an integral over Cn2 where n2 :¼ #S; n1 :¼ n� n2 þ 1. The integral

vanishes by dimensional reasons unless the number of edges of C connecting vertices

from S is equal to 2n2 � 3.

There are several possibilities:

6.4.1.1. First subcase of (S1): n2 ¼ 2 (Figure 8). In this subcase, two vertices from S1

are connected exactly by one edge, which we denote by e. The integral over C2 here

gives number �1 (after division by 2p coming from the formula for weightsWC). The

total integral over the boundary stratum is equal to the integral of a new graph C1

obtained from C by the contraction of edge e. It is easy to see (up to a sign) that this

term corresponds to the first line in our expression ðFÞ, the one where the operation 

on polyvector fields appears.

6.4.1.2. Second subcase of (S1): n2P3 (Figure 9). This is the most nontrivial case.

The integral corresponding to this boundary stratum vanishes because the integral of

any product of 2n2 � 3 angle forms over Cn2 where n2P3 vanishes, as is proven later

in Section 6.6.

6.4.2. Case(S2)

Points pi for i 2 S1 � f1; . . . ; ng and points qj for j 2 S2 � f1; . . . ;mg move close to

each other and to the horizontal line R. The condition is that 2n2 þm2 � 2P0 and

n2 þm2Onþm� 1, where n2 :¼ #S1;m2 :¼ #S2. The corresponding stratum is

. . .

. . .

.. e

Figure 8. Term corresponding to the operation 
.
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isomorphic to Cn1;m1
� Cn2;m2

where n1 :¼ n� n2;m1 ¼ m�m2 þ 1. The integral of

this stratum decomposes into the product of two integrals. It vanishes if the number

of edges of C connecting vertices from S1 t S2 is not equal to 2n2 þm2 � 2.

6.4.2.1. First subcase of (S2): no bad edges (Figure 10). In this subcase we assume

that there is no edge ði; jÞ in C such that i 2 S1; j 2 f1; . . . ; ngnS1.

The integral over the boundary stratum is equal to the product WC1
�WC2

where

C2 is the restriction of C to the subset S1 t S2 � f1; . . . ; ng t f1; . . . ;mg ¼ VC, and

C1 is obtained by the contraction of all vertices in this set to a new vertex of the

second type. Our condition guarantees that C1 is an admissible graph. This corre-

sponds to the second line in ðFÞ, where the product � on polydifferential operators

appears.

6.4.2.2. Second subcase of (S2): there is a bad edge (Figure 11). Now we assume that

there is an edge ði; jÞ in C such that i 2 S1; j 2 f1; . . . ; ngnS1. In this case, the integral

is zero because of the condition d/ðx; yÞ ¼ 0 if x stays on the line R.

The reader can wonder about what happens if, after the collapsing, the graph will

have multiple edges. Such terms do not appear in ðFÞ. Nevertheless, we ignore them

because in this case the differential form which we integrate vanishes as it contains as

a factor the square of a 1-form.

Thus, we see that we have exhausted all possibilities and get contributions of all

terms in the formula ðFÞ. We just proved that cC ¼ 0 for any C, and that U is an L1-

morphism.

. .
.

. . .

....
Figure 9. Many points collapse together inside H.

. .

. . .

.

. .
.

Figure 10. Many points collapse on R, no bad edges.
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6.4.3. We Finish the Proof of Theorem 6.3

In order to check that U it is a quasi-isomorphism, we should show that its com-

ponent U1 coincides with U
ð0Þ
1 introduced in Section 4.6.1.1. It follows from defi-

nitions that every admissible graph with n ¼ 1 vertex of the first type and mP0

vertices of the second type, and with m edges, is the tree in Figure 12.

The integral corresponding to this graph is ð2pÞm=m!. The map eUC from poly-

vector fields to polydifferential operators is the one which appears in Section 4.6.1.1:

n1 ^ � � � ^ nm !
1

m!

X
r2Rm

sgnðrÞ � nr1 � � � � � nrm ; ni 2 CðRd;TÞ:

Theorem 6.3 is proven.

6.4.4. Comparison with the Formula from Section 2

The weight wC defined in Section 2 differ from WC defined in Section 6.2 by the

factor 2n=n!. On the other hand, the bidifferential operator BC;aðf; gÞ is 2�n times

UCða ^ � � � ^ aÞðf� gÞ. The inverse factorial 1=n! appears in the Taylor series (see the

end of Section 4.3). Thus, we obtain the formula from Section 2.

6.5. GRADING, ORIENTATIONS, FACTORIALS, SIGNS

Taylor coefficients of UþU0 are maps of graded spaces

Symnðða
kP0

CðRd;^kTÞ½�k�Þ½2�Þ ! ðHomðA½1��m;A½1�ÞÞ½1�;

where Hom denotes the internal Hom in the tensor category Gradedk. We denote the

expression from above by ðEÞ. First of all, in the expression ðEÞ each polyvector field

. . ..

. . .

.

. .  edge
bad

Figure 11. Many points collapse on R, with a bad edge.

.

.

q q q

p

. . .

3

1

q m1 2

. . .
Figure 12. A tree with one vertex in H.
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ci 2 CðRd;^kiTÞ appears with the shift 2� ki. In our formula forU the same ci gives ki
edges of the graph, and thus ki 1-forms which we have to integrate. Also, it gives two

dimensions for the integration domain Cn;m. Secondly, every function fj 2 A appears

with shift 1 in ðEÞ and gives 1 dimension to the integration domain. We are left with

two shifts by 1 in ðEÞwhich are accounted for two dimensions of the groupGð1Þ. From

this it is clear that our formula for U is compatible with Z-grading.

Moreover, it is also clear that things responsible for various signs in our formulas:

(1) the orientation of Cn;m,

(2) the order in which we multiply 1-forms d/e,

(3) Z-gradings of vector spaces in ðEÞ,

are naturally decomposed into pairs. This implies that the enumeration of the set of

vertices of C, and also the enumeration of edges in sets StarðvÞ for vertices v of the

first type are not really used. Thus, we see that Un is skew-symmetric.

Inverse factorials 1=ð#StarðvÞ!Þ kill the summation over enumerations of sets

StarðvÞ. The inverse factorial 1=n! in the final formula does not appear because we

consider higher derivatives which are already multiplied by n!.

The last thing to check is that in our derivation of the fact that U is an L1-

morphism using the Stokes formula, we did not loose a sign anywhere. This is a bit

hard to explain. How, for example, can one compare the standard orientation on C

with shifts by 2 in ðEÞ? As a hint to the reader, we would like to mention that it is

very convenient to ‘place’ the resulting expression

U :¼ UCðc1 � � � � � cnÞð Þðf1 � � � � � fmÞ

at the point 1 on the absolute.

6.6. VANISHING OF INTEGRALS OVER Cn; nP3

In this subsection we consider the space Cn of Gð2Þ- equivalence classes of configu-

rations of points on the Euclidean plane. Every two indices i; j; i 6¼ j; 1Oi; jOn give a

forgetting map Cn ! C2 ’ S1. We denote by d/i;j the closed 1-form on Cn which is

the pullback of the standard 1-form dðangleÞ on the circle. We use the same notation

for the pullback of this form to Confn.

LEMMA 6.4. Let nP3 be an integer. The integral over Cn of the product of any

2n� 3 ¼ dimðCnÞ closed 1-forms d/ia;ja , a ¼ 1; . . . ; 2n� 3, is equal to zero.

Proof. First of all, we identify Cn with the subset C0n of Confn consisting of con-

figurations such that the point pi1 is 0 2 C and pj1 is on the unit circle S1 � C. Also,

we rewrite the form which we integrate as

2̂n�3

a¼1
d/ia;ja ¼ d/i1;j1

^
2̂n�3

a¼2
dð/ia;ja � /i1;j1Þ:
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Let usmap the spaceC 0n onto the spaceC
00
n � Confn consisting of configurationswith

pi1 ¼ 0 and pj1 ¼ 1, applying rotations with the center at 0. Differential forms

dð/ia;ja � /i1;j1Þ onC0n are pullbacks of differential forms d/ia;ja onC00n. The integral of a

product of 2n� 3 closed 1-forms d/ia;ja ; a ¼ 1; . . . ; 2n� 3 overC0n is equal to�2p times

the integral of the product 2n� 4 closed 1-forms d/ia;ja ; a ¼ 2; . . . ; 2n� 3 over C 00n .

The space C 00n is a complex manifold. We are calculating an absolutely converging

integral of the typeZ
C 00n

Y
a

dArgðZaÞ;

where Za are holomorphic invertible functions on C 00n (differences between complex

coordinates of points of the configuration). We claim that it is zero because of the

general result proven in Section 6.6.1. (

6.6.1. A Trick Using Logarithms

THEOREM 6.5. Let X be a complex algebraic variety of dimension NP1 and

Z1; . . . ;Z2N be rational functions on X, not equal identically to zero. Let U be any

Zariski open subset of X such that functions Za are defined and nonvanishing on U, and

U consists of smooth points. Then the integralZ
UðCÞ
^2Na¼1dðArg ZaÞ

is absolutely convergent, and equal to zero.

This result seems to be new, although the main trick used in the proof is well

known. Goncharov told me that he also came to the same result in his study of mixed

Tate motives.

Proof. First of all, we claim that the differential form ^2Na¼1dArgðZaÞ on UðCÞ
coincides with the form ^2Na¼1d LogjZaj (this is the trick).

We can replace dArgðZaÞ by the linear combination of a holomorphic and an anti-

holomorphic form

1

2i
dðLogZaÞ � dðLogZaÞ
� 	

:

Thus, the form which we integrate over UðCÞ is a sum of products of holomorphic

and of anti-holomorphic forms. The summand corresponding to a product of a

nonequal number of holomorphic and of anti-holomorphic forms, vanishes identi-

cally because UðCÞ is a complex manifold. The conclusion is that the number of anti-

holomorphic factors in nonvanishing summands is the same for all of them, it

coincides with the complex dimension N of UðCÞ. The same products of holomor-

phic and of anti-holomorphic forms survive in the product

2̂N

a¼1
d LogjZaj ¼

2̂N

a¼1

1

2
dðLogZaÞ þ dðLogZaÞ
� 	

:
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Let us choose a compactification U of U such that UnU is a divisor with normal

crossings. If / is a smooth differential form on UðCÞ such that coefficients of / are

locally integrable on UðCÞ, then we denote by Ið/Þ corresponding differential form

on UðCÞ with coefficients in the space of distributions.

LEMMA 6.6. Let x be a form on UðCÞ which is a linear combination of products of

functions LogjZaj and of 1-forms dLogjZaj where Za 2 O�ðUÞ are regular invertible

functions on U. Then coefficients of x and of dx are locally L1 functions on UðCÞ.
Moreover, IðdxÞ ¼ dðIðxÞÞ. Also, the integral

R
UðCÞ x is absolutely convergent and

equal to the integral
R
UðCÞIðxÞ.

The lemma is an elementary exercise in the theory of distributions, after passing to

local coordinates on UðCÞ. We leave details of the proof to the reader. Also, the

statement of the lemma remains true without the condition that UnU is a divisor

with normal crossings. (
The vanishing of the integral in the theorem is clear now by the Stokes formula:Z

UðCÞ

2̂N

a¼1
dArgðZaÞ ¼

Z
UðCÞ

2̂N

a¼1
dLogjZaj¼

Z
UðCÞ

I d LogjZ1j
2̂N

a¼2
dLogjZaj

 ! !

¼
Z
UðCÞ

d I LogjZ1j
2̂N

a¼2
dLogjZaj

 ! !
¼0:

(

In fact, the convergence and the vanishing of the integral
R
UðCÞ ^2Na¼1dLogjZaj is a

purely geometric fact. Namely, the image of UðCÞ in R2N under the map

x 7! ðLogjZ1ðxÞj; . . . ;LogjZ2NðxÞjÞ has finite volume and every noncritical point in

this image appears zero times, when points in the pre-image are counted with signs

arising from the comparison of canonical orientations on UðCÞ and R2N.

6.6.2. Remark

The vanishing of the integral in Lemma 6.4. has a higher-dimensional analogue

which is crucial in the perturbative Chern–Simons theory in the dimension 3, and its

generalizations to dimensions P4 (see [30]). However, the vanishing of integrals in

dimensions P3 follows from a much simpler fact which is the existence of a geo-

metric involution making the integral to be equal to minus itself. In the present

paper, we will use several times similar arguments involving involutions.

7. Formality Conjecture for General Manifolds

In this section we establish the formality conjecture for general manifolds and not only

for open domains in Rd. It turns out that that essentially all the work has been done

already.Theonlynewanalytic result is vanishingof certain integrals over configuration

spaces, analogous to Lemma 6.4.
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One can treat Rd
formal, the formal completion of vector space Rd at zero, in many

respects as a usual manifold. In particular, we can define differential graded Lie alge-

bras DpolyðRd
formalÞ and TpolyðRd

formalÞ. The Lie algebra Wd :¼ VectðRd
formalÞ is the

standardLie algebraof formal vector fields.We considerWd as a differential gradedLie

algebra (with the trivial grading and the differential equal to 0). There are natural

homomorphisms of differential graded Lie algebras:

mT : Wd ! TpolyðRd
formalÞ; mD : Wd ! DpolyðRd

formalÞ;
because vector fields can be considered as polyvector fields and as differential oper-

ators.

We will use the following properties of the quasi-isomorphism U from Section 6.4:

(P1) U can be defined for Rd
formal as well,

(P2) for any n 2Wd we have the equality

U1ðmTðnÞÞ ¼ mDðU1ðnÞÞ;
(P3) U is GLðd;RÞ-equivariant,
(P4) for any kP2, n1; . . . ; nk 2Wd we have the equality

UkðmTðn1Þ � � � � �mTðnkÞÞ ¼ 0;

(P5) for any kP2, n 2 glðd;RÞ �Wd, and for any g2; . . . ; gk 2 TpolyðRd
formalÞ we have

UkðmTðnÞ � g2 � � � � � gkÞ ¼ 0:

We will construct quasi-isomorphisms from TpolyðXÞ to DpolyðXÞ for arbitrary d-

dimensional manifold X using only properties (P1)–(P5) of the map U. Properties

(P1), (P2) and (P3) are evident, and the properties (P4), (P5) will be established later

in Sections 7.3.1.1 and 7.3.3.1.

It will be convenient to use in this section the geometric language of formal graded

manifolds instead of the algebraic language of L1-algebras. Let us fix the dimension

d 2 N. We introduce three formal graded Q-manifolds without base points:

T;D;W: These formal graded Q-manifolds are obtained in the usual way from

differential graded Lie algebras TpolyðRd
formalÞ, DpolyðRd

formalÞ and Wd forgetting base

points.

In Sections 7.1 and 7.2, we present two general geometric constructions which will

used in Section 7.3 for the proof of formality of DpolyðXÞ.

7.1. FORMAL GEOMETRY (IN THE SENSE OF GELFAND AND KAZHDAN)

Let X be a smooth manifold of dimension d. We associate with X two infinite-

dimensional manifolds, Xcoor and Xaff. The manifold Xcoor consists of pairs ðx; fÞ
where x is a point of X and f is an infinite germ of a coordinate system on X at x,

f : ðRd
formal; 0Þ ,!ðX; xÞ:

We consider Xcoor as a projective limit of finite-dimensional manifolds (spaces of

finite germs of coordinate systems). There is an action on Xcoor of the (pro-Lie) group

Gd of formal diffeomorphisms of Rd preserving base point 0. The natural projection

map Xcoor ! X is a principal Gd-bundle.
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The manifold Xaff is defined as the quotient space Xcoor=GLðd;RÞ. It can be

thought of as the space of formal affine structures at points of X. The main reason to

introduce Xaff is that fibers of the natural projection map Xaff ! X are contractible.

The Lie algebra of the group Gd is a subalgebra of codimension d inWd. It consists

of formal vector fields vanishing at zero. Thus, LieðGdÞ acts on Xcoor. It is easy to see

that in fact the whole Lie algebra Wd acts on Xcoor and is isomorphic to the tangent

space to Xcoor at each point. Formally, the infinite-dimensional manifold Xcoor looks

as a principal homogeneous space of the nonexistent group with the Lie algebra Wd.

The main idea of formal geometry (see [18]) is to replace d-dimensional manifolds

by ‘principal homogeneous spaces’ of Wd. Differential-geometric constructions on

Xcoor can be obtained from Lie-algebraic constructions for Wd. For a while we will

work only with Xcoor, and then at the end return to Xaff. In terms of Lie algebras, it

corresponds to the difference between absolute and relative cohomology.

7.2. FLAT CONNECTIONS AND Q-EQUIVARIANT MAPS

Let M be a C1-manifold (or a complex analytic manifold, or an algebraic manifold,

or a projective limit of manifolds, etc.). Denote by PTM the supermanifold which is

the total space of the tangent bundle of M endowed with the reversed parity.

Functions on the PTM are differential forms on M. The de Rham differential dM on

forms can be considered as an odd vector field on PTM with the square equal to 0.

Thus, PTM is a Q-manifold. It seems that the accurate notation for PTM consid-

ered as a graded manifold should be T½1�M (the total space of the graded vector

bundle TM½1� considered as a graded manifold).

Let N!M be a bundle over a manifold M whose fibers are manifolds, or vector

spaces, etc., endowed with a flat connection r. Denote by E the pullback of this

bundle to B :¼ PTM. The connectionr gives a lift of the vector field QB :¼ dM on B

to the vector field QE on E. This can be done for arbitrary connection, and only for

flat connection the identity ½QE;QE� ¼ 0 holds.

A generalization of a (nonlinear) bundle with a flat connection is a Q-equivariant

bundle whose total space and the base are Q-manifolds. In the case of graded vector

bundles over T½1�M this notion was introduced Quillen under the name of a

superconnection (see [41]). A generalization of the notion of a covariantly flat

morphism from one bundle to another is the notion of a Q-equivariant map.

DEFINITION 7.1. A flat family over Q-manifold B is a pair ðp : E! B; rÞ where
p : E! B is a Q-equivariant bundle whose fibers are formal manifolds, and a

r : B! E is a Q-equivariant section of this bundle.

In the case B ¼ fpointg a flat family over B is the same a formal Q-manifold with

base point. It is clear that flat families over a given Q-manifold form a category.

We apologize for the terminology. More precise name for ‘flat families’ would be

‘flat families of pointed formal manifolds’, but it is too long.

MAXIM KONTSEVICH198



One can define analogously flat graded families over graded Q-manifolds.

We refer the reader to a discussion of further examples of Q-manifolds in [32].

7.3. FLAT FAMILIES IN DEFORMATION QUANTIZATION

Let us return to our concrete situation. We construct in this section two flat families

over PTX (where X is a d-dimensional manifold), and a morphism between them.

This will be done in several steps.

7.3.1. Flat Families over W

The first bundle over W is trivial as a Q-equivariant bundle, T�W!W but with

a nontrivial section rT. This section is not the zero section, but the graph of the Q-

equivariant map W!T coming from the homomorphism of differential graded

Lie algebras mT : Wd ! TpolyðRd
formalÞ. Analogously, the second bundle is the trivial

Q-equivariant bundle D�W!W with the section rD coming from the homo-

morphism mD : Wd ! DpolyðRd
formalÞ.

Formulas from Section 6.4 give a Q-equivariant map U : T! D.

LEMMA 7.2. The morphism ðU� idWÞ : T�W! D�W is a morphism of flat

families over W.

Proof. We have to check that ðU� idWÞ maps one section to another, i.e. that

ðU� idWÞ � rT ¼ rD 2MapsðW;D�WÞ:
We compare Taylor coefficients. The linear part U1 of U maps a vector field

(considered as a polyvector field) to itself, considered as a differential operator

(property (P2)). Components Ukðn1; . . . ; nkÞ for kP2; ni 2 T0ðRdÞ ¼ CðRd;TÞ van-
ish, which is the property (P4). (

7.3.1.1. Proof of the property (P4). Graphs appearing in the calculation of

Ukðn1; . . . ; nkÞ have k edges, k vertices of the first type, and m vertices of the second

type, where 2kþm� 2 ¼ k: Thus, there are no such graphs for kP3 as m is

nonnegative. The only interesting case is k ¼ 2;m ¼ 0 which is represented in

Figure 13.

By our construction, U2 restricted to vector fields is equal to the nontrivial

quadratic map

n#
Xd
i;j¼1

@iðnjÞ@jðniÞ 2 CðRd;OÞ; n ¼
X
i

ni@i 2 CðRd;TÞ

with the weightZ
C2;0

d/ð12Þd/ð21Þ ¼
Z
Hnfz0g

d/ðz; z0Þ ^ d/ðz0; zÞ;

where z0 is an arbitrary point of H.
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LEMMA 7.3. For arbitrary angle map the integral
R
Hnfz0g d/ðz; z0Þ^ d/ðz0; zÞ is equal

to zero.

Proof. We have a map C2;0�!S1 � S1, ½ðx; yÞ�7!ð/ðx; yÞ;/ðy; xÞÞ. We calculate

the integral of the pullback of the standard volume element on two-dimensional

torus. It is easy to see that the integral does not depend on the choice of map

/ : C2;0�!S1. The reason is that the image of the boundary of the integration

domain @C2;0 in S1 � S1 cancels with the reflected copy of itself under the involution

ð/1;/2Þ 7! ð/2;/1Þ of the torus S1 � S1. Let us assume that / ¼ /h and

z0 ¼ 0þ 1 � i. The integral vanishes because the involution z 7! � z reverses the

orientation ofH and preserves the form d/ðz; z0Þ ^ d/ðz0; zÞ. (

7.3.2. Flat Families over PTðXcoorÞ

If X is a d-dimensional manifold, then there is a natural map of Q-manifolds (the

Maurer–Cartan form) PTðXcoorÞ�!W: It follows from following general reasons. If

G is a Lie group, then it acts freely by left translations on itself, and also on PTG.

The quotient Q-manifold PTG=G is equal to Pg where g ¼ LieðGÞ. Thus, we have a
Q-equivariant map PTG�!Pg: Analogous construction works for any principal

homogeneous space over G. We apply it to Xcoor considered as a principal homo-

geneous space for a nonexistent group with the Lie algebra g ¼Wd.

The pullbacks of flat families of formal manifolds over W constructed in Section

7.3.1, are two flat families over PTðXcoorÞ. As Q-equivariant bundles these families

are trivial bundles

T�PTðXcoorÞ�!PTðXcoorÞ; D�PTðXcoorÞ�!PTðXcoorÞ:

Pullbacks of sections rT and rD gives sections in the bundles above. These sections

we denote again by rT and rD. The pullback of the morphism U� idW is also a

morphism of flat families.

7.3.3. Flat Families over PTðXaffÞ

Recall that Xaff is the quotient space of Xcoor by the action of GLðd;RÞ. Thus, from
functorial properties of operation PT (¼MapsðR0j1; �Þ) follows that PTðXaffÞ is the

p

p

1

2.
.

Figure 13. The only graph for property (P4).
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quotient of Q-manifold PTðXcoorÞ by the action of Q-group PTðGLðd;RÞÞ. We will

construct an action of PTðGLðd;RÞÞ on flat families T�PTðXcoorÞ and

D�PTðXcoorÞ over PTðXcoorÞ. We claim that the morphism between these families

is invariant under the action of PTðGLðd;RÞÞ. Flat families over PTðXaffÞ will be
defined as quotient families. The morphism between them will be the quotient

morphism.

The action ofPTðGLðd;RÞÞ onT and onW is defined as follows. First of all, if G

is a Lie group with the Lie algebra g, then PTG acts Q-equivariantly on Q-manifold

Pg, via the identification Pg ¼ PTG=G. Analogously, if g is a subalgebra of a larger

Lie algebra g1, and an action of G on g1 is given in a way compatible with the

inclusion g,!g1, then PTG acts on Pg1. We apply this construction to the case

G ¼ GLðn;RÞ and g1 ¼ TpolyðRd
formalÞ or g1 ¼ DpolyðRd

formalÞ.
One can check easily that sections rT and rD over PTðXcoorÞ are PTðGLðd;RÞÞ-

equivariant. Thus, we get two flat families over PTðXaffÞ.
The last thing we have to check is that the morphism U� idPTðXcoorÞ of flat families

T�PTðXcoorÞ�!D�PTðXcoorÞ

is PTðGLðd;RÞÞ-equivariant. After the translation of the problem to the language of

Lie algebras, we see that we should check that U is GLðd;RÞ-invariant (property

(P3), that is clear by our construction), and that if we substitute an element of

glðd;RÞ �Wd in U�2, we get zero (property (P5), see Section 7.3.3.1).

CONCLUSION. We constructed two flat families over PTðXaffÞ and a morphism

between them. Fibers of these families are isomorphic to T and to D.

7.3.3.1. Property (P5). This is again reduces to the calculation of an integral. Let v

be a vertex of C to which we put an element of glðd;RÞ. There is exactly one edge

starting at v because we put a vector field here. If there are no edges ending at v, then

the integral is zero because the domain of integration is foliated by lines along which

all forms vanish. These lines are level sets of the function /ðz;wÞ where w 2H t R is

fixed and z is the point on H corresponding to v (see Figure 14).

If there are at least two edges ending at v, then the corresponding polydifferential

operator is equal to zero, because second derivatives of coefficients of a linear vector

field vanish.

The only relevant case is when there is only one edge starting at v, and only one

edge ending there. If these two edges connect our vertex with the same vertex of C,
then the vanishing follows from Lemma 7.3. If our vertex is connected with two

different vertices as in Figure. 15, then we apply the following two lemmas:

LEMMA 7.4. Let z1 6¼ z2 2H be two distinct points on H. Then the integralZ
z2Hnfz1;z2g

d/ðz1; zÞ ^ d/ðz; z2Þ

vanishes.
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LEMMA 7.5. Let z1 2H; z2 2 R be two points on H t R. Then the integralZ
z2Hnfz1;z2g

d/ðz1; zÞ ^ d/ðz; z2Þ

vanishes.

Proof. One can prove analogously to Lemma 7.3 that the integral does not depend

on the choice of an angle map, and also on points z1; z2. In the case of / ¼ /h and

both points z1; z2 are pure imaginary, the vanishing follows from the anti-symmetry

of the integral under the involution z 7! � z. (

7.3.4. Flat Families over X

Let us choose a section saff of the bundle Xaff�!X. Such section always exists

because fibers of this bundle are contractible. For example, any torsion-free con-

nection r on the tangent bundle to X gives a section X�!Xaff. Namely, the expo-

nential map for r gives an identification of a neighborhood of each point x 2 X with

a neighborhood of zero in the vector space TxX, i.e. an affine structure on X near x,

and a point of Xaff over x 2 X.

The section saff defines a map of formal graded Q-manifolds PTX�!PTðXaffÞ.
After taking the pullback we get two flat families Tsaff and Dsaff over PTX and an

morphism msaff from one to another.

We claim that these two flat families admit definitions independent of saff. Only the

morphism msaff depends on saff.

. .
.z

. . .

.w

.
Figure 14. Level sets for function uðz;wÞ for fixed w (dashed lines).

.
.

z

z 2

. z1

z .
z.

.z2

1

or

Figure 15. Two graphs for property (P5).

MAXIM KONTSEVICH202



Namely, let us consider infinite-dimensional bundles of differential graded Lie

algebras jets1Tpoly and jets1Dpoly over X whose fibers at x 2 X are spaces of infinite

jets of polyvector fields or polydifferential operators at x respectively. These two

bundles carry natural flat connections (in the usual sense, not as in Section 7.2) as any

bundle of infinite jets. Thus, we have two flat families (in generalized sense) overPTX.

LEMMA 7.6. Flat families Tsaff and Dsaff are canonically isomorphic to flat families

described just above.

Proof. It follows from definitions that pullbacks of bundles jets1Tpoly and

jets1Dpoly from X to Xcoor are canonically trivialized. The Maurer–Cartan 1-forms

on Xcoor with values in graded Lie algebras TpolyðRd
formalÞ or DpolyðRd

formalÞ come from

pullbacks of flat connections on bundles of infinite jets. Thus, we identified our flat

families over PTðXcoorÞ with pullbacks. The same is true for Xaff. (

7.3.5. Passing to Global Sections

If in general ðp : E�!B; rÞ is a flat family, then one can make a new formal pointed

Q-manifold:

CðE�!BÞformal; r
� 	

:

This is an infinite-dimensional formal super manifold, the formal completion of the

space of sections of the bundle E�!B at the point r. The structure of Q-manifold on

CðE�!BÞ is evident because the Lie supergroup R0j1 acts on E�!B.

LEMMA 7.7. Formally completed spaces of global sections of flat families Tsaff and

Dsaff a naturally quasi-isomorphic to TpolyðXÞ and DpolyðXÞ; respectively.
Proof. It is well known that if E�!X is a vector bundle then de Rham cohomology

of X with coefficients in formally flat infinite-dimensional bundle jets1E are con-

centrated in degree 0 and canonically isomorphic to the vector space CðX;EÞ.
Moreover, the natural homomorphism of complexes

CðX;EÞ½0�; differential ¼ 0ð Þ�! X�ðX; jets1ðEÞÞ; de Rham differentialð Þ
is quasi-isomorphism.

Using this fact, the lemma from the previous subsection, and appropriate filtra-

tions (for spectral sequences) one sees that that the natural Q-equivariant map from

the formal Q-manifold ðTpolyðXÞformal½1�; 0Þ to ðCðTsaff�!T½1�XÞformal; rTÞ (and

analogous map for Dpoly) is a quasi-isomorphism. (

It follows from the lemma above and the result of Section 4.6.1.1 that we have a

chain of quasi-isomorphisms

TpolyðXÞ½1�formal�!CðTsaff �!T½1�XÞformal�!
�!CðDsaff �!T½1�XÞformal �TpolyðXÞ½1�formal:

Thus, differential graded Lie algebras TpolyðXÞ and DpolyðXÞ are quasi-isomorphic.

The Main Theorem stated in Section 4.6.2. is proven. (
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The space of sections of the bundle Xaff�!X is contractible. From this fact one

can conclude that the quasi-isomorphism constructed above is well-defined homo-

topically.

8. Cup Products

8.1. CUP PRODUCTS ON TANGENT COHOMOLOGY

The differential graded Lie algebras Tpoly, Dpoly and (more generally) shifted by

½1� Hochschild complexes of arbitrary associative algebras, all carry an addi-

tional structure. We do not know at the moment a definition, it should be some-

thing close to so called homotopy Gerstenhaber algebras (see [19, 20]),

although definitely not precisely this. At least, a visible part of this structure is

a commutative associative product of degree þ2 on cohomology of the tangent

space to any solution of the Maurer–Cartan equation. Namely, if g is one of dif-

ferential graded Lie algebras listed above and c 2 ðg�mÞ1 satisfies dcþ 1
2 ½c; c� ¼ 0

where m is a finite-dimensional nilpotent nonunital differential graded commutative

associative algebra, the tangent space Tc is defined as complex g�m½1�
endowed with the differential dþ ½c; ��. Cohomology space Hc of this differential is

a graded module over graded algebra HðmÞ (the cohomology space of m as a com-

plex). If c1 and c2 are two gauge equivalent solutions, then Hc1 and Hc2 are (non-

canonically) isomorphic HðmÞ-modules.

We define now cup products for all three differential graded Lie algebras listed at

the beginning of this section. For TpolyðXÞ the cup product is defined as the usual cup

product of polyvector fields (see Section 4.6.1). One can check directly that this cup

product is compatible with the differential dþ ½c; ��, and is a graded commutative

associative product. For the Hochschild complex of an associative algebra A, the cup

product on Hc is defined in a more tricky way. It is defined on the complex by the

formula

ðt1 [ t2Þða0 � � � � � anÞ
:¼

X
0�k1�k2�k3�k4�n

�cn�ðk2�k1þk4�k3Þða0 � � � �

� t1ðak1 � � � �Þ � ak2 � � � � � t2ðak3 � � � �Þ � ak4 � � � �Þ;

where cl 2 HomðA�ðlþ1Þ;AÞ � ðk½0� � 1	mÞ1�l is homogeneous component of

ðcþmA � 1Þ.
It is not a trivial check that the cup product on the Hochschild complex is

compatible with differentials, and also is commutative, associative and gauge-

equivariant on the level of cohomology. Formally, we will not use this fact. The

proof is a direct calculation with Hochschild cochains. Even if one replaces formulas

by appropriate pictures, the calculation is still quite long, about four or five pages

of tiny drawings. Alternatively, there is a simple abstract explanation using the

interpretation of the deformation theory related with the shifted Hochschild com-
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plex as a deformation theory of triangulated categories (or, better, A1-categories,

see [33]).

We define the cup product for DpolyðXÞ by the restriction of formulas for the cup-

product in CðA;AÞ.

8.2. COMPATIBILITY OF U WITH CUP PRODUCTS

THEOREM 8.1. The quasi-isomorphism U constructed in Section 6 maps the cup-

product for TpolyðXÞ to the cup product for DpolyðXÞ.
Sketch of the Proof. We translate the statement of the theorem to the language of

graphs and integrals. The tangent map is given by integrals where one of vertices of

the first type is marked. This is the vertex where we put a representative t for the

tangent element ½t� 2 Hc. We put copies of c (which is a polyvector field with values

in m) into all other vertices of the first type. The rule which we just described follows

directly from the Leibniz formula applied to the Taylor series for U.

Now we are interested in the behavior of the tangent map with respect to a bilinear

operation on the tangent space. It means that we now have two marked vertices of

the first type.

The statement of the theorem is an identity between two expressions corre-

sponding to cup products for TpolyðXÞ and DpolyðXÞ respectively.

8.2.1. Pictures for the Cup Product in Polyvector Fields

We claim that the side of identity with the cup product for the case TpolyðXÞ, cor-
responds to pictures of two points (say, p1; p2), where we put representatives of

elements of Hc which we want to multiply, are infinitely close points onH. Precisely,

this means that we integrate products of copies of the form d/ over preimages Pa of

some point a in R=2pZ ’ C2 � C2;0 with respect to the forgetting map Cn;m�!C2;0.

It is easy to see that Pa has codimension 2 in Cn;m and contains no strata CT of

codimension 2. It implies that as a singular chain, Pa is equal to the sum of closures

of noncompact hypersurfaces

Pa \ @SðCn;mÞ; Pa \ @S1;S2
ðCn;mÞ:

in boundary strata of Cn;m. It is easy to see that intersections Pa \ @S1;S2
ðCn;mÞ are

empty and intersection Pa \ @SðCn;mÞ is nonempty iff S � f1; 2g. In general pictures,

which can potentially contribute with a nonzero weight something like the one in

Figure 16.

In other words, we have a collision of several points in H including both points p1
and p2. These points should not be connected by an edge because otherwise the

integral vanishes (remember that the direction from p1 to p2 is fixed). Also, if

#S � 3, then the integral vanishes by Lemma 6.6. The only nontrivial case which is

left is when S ¼ f1; 2g and points p1; p2 are not connected. Figure 17 represents a

nonvanishing term corresponding to the cup product in TpolyðXÞ.
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8.2.2. Pictures for the Cup Product in the Hochschild Complex

The cup product for DpolyðXÞ is given by pictures where two marked points are

separated and infinitely close to R. Again, the precise definition is that we integrate

products of copies of d/ over the pre-image P0;1 of the point ½ð0; 1Þ� 2 C0;2 � C2;0.

Analysis analogous to the one from the previous subsection shows that P0;1 does not

intersect any boundary stratum of Cn;m. Thus, as a chain of codimension 2, this

pre-image P0;1 coincides with the union of closures of strata CT of codimension 2

such that CT � P0;1. It is easy to see that any such stratum gives pictures like the one

in Figure 18 where there is no arrow going from the circled regions outside (as in

Figure 11), and we get exactly the cup product in the tangent cohomology of the

Hochschild complex as was described above.

8.2.3. Homotopy Between Two Pictures

Choosing a path from one (limiting) configuration of two points on H to another

configuration (see Figure 19), we see that two products coincide on the level of

cohomology. (

. .
.

. . .

....

p1
2

p

Figure 16. A priori picture for terms for the cup-product in Tpoly.

.

. . .

. . .

.p
p

2

1

Figure 17. Nonzero terms for the cup-product in Tpoly.
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8.3. FIRST APPLICATION: DUFLO-KIRILLOV ISOMORPHISM

8.3.1. Quantization of the Kirillov–Poisson Bracket

Let g be a finite-dimensional Lie algebra over R. The dual space to g endowed with

the Kirillov–Poisson bracket is naturally a Poisson manifold (see [29]). We recall here

the formula for this bracket: if p 2 g� is a point and f; g are two functions on g then

the value ff; ggjp is defined as hp; ½dfjp; dgjp�i where the differentials of functions f; g at

p are considered as elements of g ’ ðg�Þ�. One can consider g� as an algebraic

Poisson manifold because coefficients of the Kirillov–Poisson bracket are linear

functions on g�.

THEOREM 8.2 The canonical quantization of the Poisson manifold g� is isomorphic

to the family of algebras U�hðgÞ defined as universal enveloping algebras of g endowed

with the bracket �h½ ; �.
Proof. In Section 6.4 we have constructed a canonical star product on the algebra

of functions on arbitrary finite-dimensional affine space endowed with a Poisson

structure. Therefore we obtain a canonical star product on C1ðg�Þ. We claim that the

product of any two polynomials on g� is a polynomial in �h with coefficients which are

polynomials on g�. The reason is that the star product is constructed in invariant way,

.. ..
..

. . .

. p p
1 2. . . . . 2

Figure 18. Cup product in the Hochschild complex.

. .
p p
1 2

0 1

Figure 19. Path in the configuration space of two points in H. Dashed lines are tra-
jectories of two points.
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using the contraction of indices. Let us denote by b 2 g� � g� � g the tensor giving the

Lie bracket on g. All nonzero natural operations SymkðgÞ � SymlðgÞ�! SymmðgÞ
which can be defined by contraction of indices with the tensor product of several

copies of b, exist only formOkþ l, and for every givenm, there are only finitely many

ways to contract indices. Thus, it makes sense to put �h equal to 1 and obtain a product

on SymðgÞ ¼ 	kP0Sym
kðgÞ. We denote this product also by ?.

It is easy to see that for c1; c2 2 g the following identity holds:

c1 ? c2 � c2 ? c1 ¼ ½c1; c2�:
Moreover, the top component of the star product which maps SymkðgÞ � SymlðgÞ to
SymkþlðgÞ, coincides with the standard commutative product on SymðgÞ. From this

two facts one concludes that there exists a unique isomorphism of algebras

Ialg : ðUg; �Þ�!ðSymðgÞ; ?Þ
such that IalgðcÞ ¼ c for c 2 g, where � denotes the universal enveloping algebra of g

with the standard product.

One can easily recover variable �h in this description and get the statement of the

theorem. (

COROLLARY 8.3 The center of the universal enveloping algebra is canonically iso-

morphic as an algebra to the algebra ðSymðgÞÞg of g-invariant polynomials on g�.

Proof. The center of Ug is the 0th cohomology for the (local) Hochschild complex

of Ug endowed with the standard cup product. The algebra ðSymðgÞÞg is the 0th

cohomology of the algebra of polyvector fields on g� endowed with the differential

½a; :� where a is the Kirillov–Poisson bracket. From Theorem 8.1, we conclude that

by applying the tangent map to U, we get an isomorphism of algebras. (

8.3.2. Three Isomorphisms

In the proof of Theorem 8.2 we introduced an isomorphism Ialg of algebras.

We denote by IPBW the isomorphism of vector spaces SymðgÞ�!Ug (subscript

from the Poincaré–Birkhoff–Witt theorem), which is defined as

c1c2 � � � cn�!
1

n!

X
r2Rn

cr1 � cr2 � � � crn :

Analogously to the arguments above, one can see that the tangent map from

polyvector fields on g� to the Hochschild complex of the quantized algebra can be

defined for �h ¼ 1 and for polynomial coefficients. We denote by IT its component

which maps polynomial 0-vector fields on g� (i.e. elements of SymðgÞ) to 0-cochains

of the Hochschild complex of the algebra ðSymðgÞ; ?Þ. Thus, IT is an isomorphism of

vector spaces

IT : SymðgÞ �! SymðgÞ
and the restriction of IT to the algebra of adðgÞ�-invariant polynomials on g� is an

isomorphism of algebras
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SymðgÞg�!CenterððSymðgÞ; ?ÞÞ:
Combining all facts from above we get a sequence of isomorphisms of vector spaces:

SymðgÞ�!IT SymðgÞ �
Ialg

Ug �IPBW
SymðgÞ:

These isomorphisms are adðgÞ-invariant. Thus, one get isomorphisms

ðSymðgÞÞg�!
ITj���

CenterðSymðgÞ; ?Þ �
Ialgj���

CenterðUgÞ  �
IPBWj��� ðSymðgÞÞg;

where the subscript j � � � denotes the restriction to subspaces of adðgÞ-invariants.
Moreover, first two arrows are isomorphism of algebras. Thus, we have proved the

following theorem:

THEOREM 8.4. The restriction of the map

ðIalgÞ�1 � IT : SymðgÞ�!Ug

to ðSymðgÞÞg is an isomorphism of algebras ðSymðgÞÞg�! Center ðUgÞ.

8.3.3. Automorphisms of SymðgÞ

Let us calculate the automorphisms IT and Ialg � IPBW of the vector space SymðgÞ.
We claim that both these automorphisms are translation invariant operators on the

space SymðgÞ of polynomials on g�.

The algebra of translation invariant operators on the space of polynomials on a

vector space V is canonically isomorphic to the algebra of formal power series

generated by V. Generators of this algebra acts as derivations along constant vector

fields in V. Thus, any such operator can be seen as a formal power series at zero on

the dual vector space V�. We apply this formalism to the case V ¼ g�.

THEOREM 8.5. Operators IT and Ialg � IPBW respectively, are translation invariant

operators associated with formal power series S1ðcÞ and S2ðcÞ at zero in g of the form

S1ðcÞ ¼ exp
X
k�1

c
ð1Þ
2k Trace ðadðcÞ2kÞ

 !
;

S2ðcÞ ¼ exp
X
k�1

c
ð2Þ
2k Trace ðadðcÞ2kÞ

 !
;

where c
ð1Þ
2 ; c

ð1Þ
4 ; � � � and c

ð2Þ
2 ; c

ð2Þ
4 ; � � � are two infinite sequences of real numbers indexed

by even natural numbers.

Proof. We will study separately two cases.

8.3.3.1. Isomorphism IT. The isomorphism IT is given by the sum over terms corre-

sponding to admissible graphs C with no vertices of the second type, one special

vertex v of the first type such that no edge starts at v, and such that at any other
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vertex starts with two edges and ends no more than one edge. Vertex v is the marked

vertex where we put an element of SymðgÞ considered as an element of tangent

cohomology. At other vertices we put the Poisson–Kirillov bi-vector field on g�, i.e.

the tensor of commutator operation in g. As the result we get 0-differential operator,

i.e. an element of algebra SymðgÞ.
It is easy to see that any such graph is isomorphic to a union of copies of ‘wheels’

Whn; nP2 represented in Figure 20 with identified central vertex v. Figure 21 shows a

typical graph of the union.

In the integration, we may assume that the point corresponding to v is fixed, say

that it is i � 1þ 0 2H, because group Gð1Þ acts simply transitively on H. First of all,

the operator SymðgÞ�! SymðgÞ corresponding to the individual wheel Whn is the

differential operator on g� with constant coefficients, and it corresponds to the

polynomial c 7! Trace ðadðcÞnÞ on g. The operator corresponding to the joint of

several wheels is the product of operators associated with individual wheels. Also,

the integral corresponding to the joint is the product of integrals. Thus, with the help

of symmetry factors, we conclude that the total operator is equal to the exponent of

the sum of operators associated with wheels Whn; nP2 with weights equal to cor-

responding integrals. By the symmetry argument used several times before (z 7! � z),

we see that integrals corresponding to wheels with odd n vanish. The first statement

of Theorem 8.5 is proven. (

.
.1

2
. . .

v

n

..
.

.
.

Figure 20. Wheel graph.

.v

...

.
.

.

..

Figure 21. A union of wheels.
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8.3.3.2. Isomorphism Ialg � IPBW: The second case, for the operator Ialg � IPBW, is a

bit more tricky. Let us write a formula for this map:

Ialg � IPBW : cn 7! c ? c ? c? � � � ? c? ðn copies of cÞ:
This formula defines the map unambiguously because elements cn; c 2 g; nP0

generate SymðgÞ as a vector space.

In order to multiply several (say, m, where mP2) elements of the quantized

algebra, we should put these elements at m fixed points in increasing order on R and

take the sum over all possible graphs with m vertices of the second type of corre-

sponding expressions with appropriate weights. The result does not depend on the

position of fixed points on R because the star product is associative. Moreover, if we

calculate a power of a given element with respect to the ? product, we can put all

these points in arbitrary order. It follows that we can take an average over config-

urations of m points on R where each point is random, distributed independently

from other points, with a certain probability density on R. We choose a probability

distribution on R with a smooth symmetric (under transformation x 7! � x) density

qðxÞ. We assume also that qðxÞdx is the restriction to R ’ C1;1 of a smooth 1-form

on C1;1 ’ f�1g t R t fþ1g. With probability 1, our m points will be pairwise

distinct. One can check easily that the interchanging of order of integration (i.e. for

the taking mean value from the probability theory side, and for the integration of

differential forms over configuration spaces) is valid operation in our case.

The conclusion is that the mth power of an element of quantized algebra can be

calculated as a sum over all graphs with m vertices of the second type, with weights

equal to integrals over configuration spaces where we integrate products of forms d/
and 1-forms qðxiÞdxi where xi are points moving along R.

The basic element of pictures in our case are ‘wheels without axles’ (Figure 22) and

the K-graph (Figure 23) which gives 0 for symmetry reasons. The typical total picture

is something like (with m ¼ 10) the one drawn in Figure 24.

Again, it is clear from all this that the operator Ialg � IPBW is a differential operator

with constant coefficients on SymðgÞ, equal to the exponent of the sum of operators

. .

.

..
.

. .

2

. . . .

n

1

Figure 22. One of basic elements in the formula for c ? � � � ? c.
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corresponding to individual wheels. These operators are again proportional to

operators associated with power series on g

c�!Trace ðadðcÞnÞ:
By the same symmetry reasons as above we see that integrals corresponding to odd n

vanish. The second part of Theorem 8.5 is proven. (

8.3.4. Comparison with the Duflo–Kirillov Isomorphism

For the case of semi-simple g, there is so-called Harish-Chandra isomorphism be-

tween algebras ðSymðgÞÞg and CenterðUgÞ. A. Kirillov realized that there is a way to

rewrite the Harish-Chandra isomorphism in a form which makes sense for arbitrary

finite-dimensional Lie algebra, i.e. without using the Cartan and Borel subalgebras,

the Weyl group, etc. Later M. Duflo (see [13]) proved that the map proposed by

Kirillov is an isomorphism for all finite-dimensional Lie algebras.

The explicit formula for the Duflo–Kirillov isomorphism is the following:

IDK : SymðgÞð Þg’ CenterðUðgÞÞ; IDK ¼ IPBWjðSymðgÞÞg � IstrangejðSymðgÞÞg ;

where Istrange is an invertible translation invariant operator on SymðgÞ associated
with the following formal power series on g at zero, reminiscent of the square root of

the Todd class:

c 7! exp
X
kP1

B2k

4kð2kÞ!TraceðadðcÞ
2kÞ

 !
;

. .
Figure 23. Another potential basic element, it vanishes for symmetry reasons.

. . . . . . .

.

. . .

.

.

.

. . .

.

Figure 24. A term in the formula for c ? � � � ? c.
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where B2;B4; . . . are Bernoulli numbers. Formally, one can write the right-hand side

as detðqðadðcÞÞÞ where

qðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ex=2 � e�x=2

x

r
:

The fact that the Duflo–Kirillov isomorphism is an isomorphism of algebras is

highly nontrivial. All proofs known before (see [13, 21]) used certain facts about

finite-dimensional Lie algebras which follow only from the classification theory. In

particular, the fact that the analogous isomorphism for Lie superalgebras is com-

patible with products, was not know.

We claim that our isomorphism coincides with the Duflo–Kirillow isomorphism.

Let us sketch the argument. In fact, we claim that

I�1alg � IT ¼ IPBW � Istrange:

If it is not true then we get a nonzero series Err 2 t2R½½t2�� such that the translation

invariant operator on SymðgÞ associated with c 7!IdetðexpðErrðadðcÞÞÞÞ gives an automor-

phism of algebra ðSymðgÞÞg. Let 2k > 0 be the degree of the first nonvanishing term

in the expansion of Err. Then it is easy to see that the operator on SymðgÞ associated
with the polynomial c 7! TraceðadðcÞ2k is a derivation when restricted to ðSymðgÞÞg.
One can show that it is not true using Lie algebras g ¼ glðnÞ for large n. Thus, we get
a contradiction and proved that Err=0. (
As a remark, we would like to mention that if one replaces series qðxÞ above just

by the inverse to the square root of the series related to the Todd class

x

1� e�x

� ��1
2

;

then one still gets an isomorphism of algebras. The reason is that the one-parameter

group of automorphisms of SymðgÞ associated with the series

c �! expðconst � TraceðadðcÞÞÞ
preserves the structure of Poisson algebra on g�. This one-parameter group also acts

by automorphisms of Ug. It is analogous to the Tomita–Takesaki modular auto-

morphism group for von Neumann algebras.

8.3.5. Results in Rigid Tensor Categories

Many proofs from this paper can be transported to a more general context of rigid

Q-linear tensor categories (i.e. Abelian symmetric monoidal categories with the

duality functor imitating the behavior of finite-dimensional vector spaces). We will

be very brief here.

First of all, one can formulate and prove the Poincaré–Birkhoff–Witt theorem in a

great generality, in Q-linear additive symmetric monoidal categories with infinite

sums and kernels of projectors. For example, it holds in the category of A-modules

where A is an arbitrary commutative associative algebra over Q. Thus, we can speak

about universal enveloping algebras and the isomorphism IPBW.
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One can define the Duflo–Kirillow morphism for Lie algebra in a k-linear rigid

tensor category where k is a field of characteristic zero, because Bernoulli numbers

are generality as well. It cannot hold for infinite-dimensional Lie algebras because we

use traces of products of oprators in adjoint representation.

In [28] a conjecture was made in the attempt to prove that that Duflo–Kirillov

formulas give a morphism of algebras. It seems plausible our results can help one to

prove this conjecture. Also, there is another related conjecture concerning two

products in the algebra of chord diagrams (see [4]) which seems to be a corollary of

our results.

8.4. SECOND APPLICATION: ALGEBRAS OF EXT-S

Let X be complex manifold, or a smooth algebraic variety of field k of characteristic

zero. We associate with it two graded vector spaces. The first space HT
ðXÞ is the
direct sum a

k;l
HkðX;^lTXÞ½�k� l�. The second space HH
ðXÞ is the space

a
k
ExtkCohðX�XÞðOdiag;OdiagÞ½�k� of Ext-groups in the category of coherent sheaves

on X� X from the sheaf of functions on the diagonal to itself. The space HH
ðXÞ
can be thought as the Hochschild cohomology of the space X. The reason is that the

Hochschild cohomology of any algebra A can be also defined as Ext
A�mod�AðA;AÞ in
the category of bimodules.

Both spaces, HH
ðXÞ and HT
ðXÞ carry natural products. For HH
ðXÞ it is the
Yoneda composition, and for HT
ðXÞ it is the cup-product of cohomology and of

polyvector fields.

CLAIM Graded algebras HH
ðXÞ and HT
ðXÞ are canonically isomorphic. The

isomorphism between them is functorial with respect to étale maps.

This statement (important for the Mirror Symmetry, see [33]) is again a corollary

of Theorem 8.1. Here we will not give the proof.
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Vol. I (Dijon 1999), Kluwer Acad. Publ., Dordrecht, 2000, pp. 255–307.

38. McClure, M. and Smith, J.: A solution of Deligne’s Hochschild cohomology conjecture,

In: Recent Progress in Homotopy Theory (Baltimore, MD, 2000), Contemp. Math. 293,
Amer. Math. Soc., Providence, RI, 2002, pp. 153–193,

39. Manin, Y.I.: Gauge Field Theory and Complex Geometry, Springer-Verlag, Berlin, 1988.
40. Markl, M. and Voronov, A.: PROPped up graph cohomology, 2000, math.QA/0307081.

41. Quillen, D.: Superconnections and the Chern character, Topology 24 (1985), 89–95.
42. Schlessinger, M. and Stasheff, J.: The Lie algebra structure on tangent cohomology and

deformation theory, J. Pure Appl. Algebra 38 (1985), 313–322.

43. Sullivan, D.: Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math.
(1977) No. 47, (1978), 269–331.

44. Voronov,A.:QuantizingPoissonmanifolds, In:Perspectives onQuantization (SouthHadley,

MA, 1996), Contemp. Math. 214, Amer. Math. Soc., Providence, RI, 1998, pp. 189–195.
45. Tamarkin, D.: Another proof of M. Kontsevich formality theorem, 1998,

math.QA/9803025.

46. Tamarkin, D.: Quantization of Lie bialgebras via the formality of the operad of little disks,
in: G.Halbout (ed.), Deformation Quantization (Strasbourg 2001), IRMA Lectures in
Math. Theoret. Phys. Vol. I, Walter de Gruyter, Berlin, 2002, pp. 203–236.

47. Tamarkin, D. and Tsygan, B.: Noncommutative differential calculus, homotopy BV

algebras and formality conjectures, Methods Funct. Anal. Topology 6(2) (2000), 85–100.

MAXIM KONTSEVICH216


