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We discuss near collisions of equally charged particles in a quantum Coulomb many
body system. Using the three-body dominance of near ‘collisions at low energies, we
may restrict the study to a system of two positively charged and one negatively charged
particle in a box, with periodic boundary conditions. The main low enérgy ‘collision
states are found to be at the top of the negative energy bands. This suggests a hybrid
Fusion method where deuterons absorbed into a metal lattice would be resopantly excited
to collision states by electromagnetic radlatlon in the ultraviolet range.

lv. Introduction

Hydrogen and its isotopes (deuterium and tritium) are easily absorbed into metals
like palladium or titanium, forming an interstitial solid solution.! The hydrogen
isotopes occupy the free spaces between the atoms of the metal Jattice. In static
conditions and when the number of deuterons is smaller or equal to the number
of palladium nuclei, the closest distance between the deuterons is about twice the
internuclear distance in an ordinary deuterium gas molecule. For higher concentra-
tions, even when two deuterons are contained in one of the octahedral cages of the
fce lattice, the equilibrium distance is estimated to be at least 30% larger than in the
gas molecule.2 Furthermore, first principle calculations show that at short distances
there is virtually no d electron screening.® The conclusion is that in equilibrium con-
ditions there is no special enhancement of the Coulomb barrier penetration factor
and therefore, except maybe for occasional and 1rreproduclble bursts* correspond-
- ing to improbable large deviations from the equilibrium configurations, cold fusion
reactions of deuterium are extremely unlikely.
Transition metals can absorb hydrogen (and its isotopes) even beyond the den-
_ sity of the solid phase of Hy. Comparing the relative ease with which hydrogen
is confined in a metal lattice as compared to the difficulty of confining it in a hot
plasma, it is tempting to speculate whether it might be possible to create condi-
tions in the metal-deuterium solution which would effectively reduce the deuteron
internuclear distances. From the discussion above it is clear that such conditions,
if they were to exist, would have to be nonequilibrium conditions and the following
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questions arise:

(i) Are there nonequilibrium situations where the distance between the deuteron
nuclei in a metal lattice is substantially reduced to near collision distances
sufficient to initiate fusion reactions?

(i) Can such nonequilibrium conditions be created in a reproducible way, without
destroying the metal lattice, thus leading to steady energy production?

To rely on thermal excitations to bring the deuterons into collision would require
high temperatures that would melt the lattice, therefore subtler effects must be
explored. In two previous papers®® I have addressed.question (i) in a classical
mechanics context. The main conclusions that were obtained are the following:

(a) The most unbiased nonequilibrium setting consists in assuming that the many-
body deuterons-electrons system covers ergodically each energy surface in phase
space. Under this hypothesis one finds that, at low energy, the instances of close
proxlmlty of two deuterons are dominated by three-body processes of the (DeD)
type.

(b) Concentrating in the three-body system of twe deuterons and one electron, with
periodic boundary conditions in a box. of lattice size, one finds that in the mi-
crocanonical sense, there is a non-negligible probability for near collision'of two
deuterons. For fully ergodic motion on the energy surface (at zero energy), the
probability for (DeD) near collisions is orders of magnitude above the proba-
bility for tunneling through the Coulomb barrier in a (DeD)* bound state. An
event where two deuterons come to a distance ¢ is called an ¢ collision.  For
sufficiently small £, the rate n. of ¢ colhslons of positively charged partlcles of
mass M is estimated to be Ceo

; o T (1. 1)
where pi, = VMb3/e; b is the lattice spacing (size of the box), e is the electron
charge, C =~ 154, and a ~ 2.7. For a high concentration of deuterons in-the
metal lattice, this ergodic rate, if it could be realized, would lead to high fusion
yields, although we should notice that for each individual process the rate is
smaller than in the muon-catalyzed fusion.

ne =

The second important point to be answered is whether it is pdssible or likely
to realize ergodic conditions in the metal-deuteron system ‘The results obtained
in the classical mechanics setting® are not very encouraging.” Deuterons trapped in
interstitial positions cover a tiny area of its energy surface. Even if one increases the
hopping probability by raising the temperature and incréasing the ‘concentratlon,
the amount of the available phase space that is effectively explored by the system
is severely limited by conservation laws and KAM tori or Mather cantori. Even
without the trapping effect of the lattice, conservation laws lead to large deviations
from the ergodic estimates. For example, in numerical simulations,® éne finds con-
sistently a rate of near collisions much smaller than the phase space estimates. The
main reason is that near collisions at low energies are concentrated in a narrow
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' region near the zero angular momentum aid, for a finite number of ‘different initial
conditions chosen at random, it is improbable to fall in this region.

In this paper the near collision problem is reanalyzed in a quantum setting.
Due to the three-body dominance of near collisions we may again concentrate on a
three-body (DeD) system, with periodic boundary conditions on a box to account
for the lattice environment in which the system is immersed. The situation appears
to be rather different from the classical one. Rather than ‘having motion on an
energy surface with a phase space region corresponding to near collisions, one has
a splitting into energy bands with the states at the bottom of the bands being
deuteron-separated states and the states at the top of the bands being near collision
states. In this sense the quantum situation is more favorable; because one might
be able to excite directly the near collision states by resonant excitation with the
appropriate bandwidth energy. The three-body Hamiltonian to be considered is-.

¢
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(1.2)
It is convenient to choose a length scale to simplify the Hamiltonian (1.2). Writing
Xi=azl, : (1.3a)
X; = az}, (1.3b)
Y = ayf, ‘ (1.3¢)
with
h2
| 8= ST (1.4)
one obtains
a 1 11 1
H=SH=-A;, —A;, - —A - - , (1.5
R T e e R e I

where ¥ = m/M. If e is the electronic charge, m the electron mass, and M the
deuteron mass, then v = 2.7 x 10~* and a = 7.209 x 10~!2 c¢m. For deuterons in a
palladium lattice, the typical average deuteron separations are of the order of one
angstrom. Most of the calculations carried out in this paper assume a box with
periodic boundary conditions and size L = 0.94 x 10~2 cm, that is L = 13039 in
units of a.

2. A Toy One-Dimensional Model

As calculations are easier and a full analysis may be carried out, I will first consider
a one-dimensional model. Once the nature of the states corresponding to quantum
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near collisions is understood in this model, the overall mechanism is easily carried
out to the three-dimensional Coulonib case. Consider the Hamiltonian

H, = —63, - 63,‘— ;azy +[U(ler — za)) = UJea = yl) = U(lz2 - vl (2.1)

for two positively charged and one negatively chafged particles living on a ¢ircle of
perimeter L. U(z) is the piecewise linear periodic potential .

vere %s(%) g

S being the function shown in Fig. 1.  The 1/L factors are included to have en-
ergy expectation values close to the intensity of Coulomb effects. Furthermore one
chooses V = 6 which leads for S(z/L) on the interval [~1/2, 1/2] to the same ex-
pectation value as the scaled Coulomb potential 1/|z/L| in a ball of radius 1/2. For
simplicity call deuterons the positively charged particles and electron the negatively
charged one. These are only. suggestive names, the actual numerical predictions for
the physical particles being deferred to the Coulomb problem in Sec. 3.

Consider a basis of box-normalized free momentum eigenstates with periodic
boundary conditions - exp(i27kz), k = n/L, n =0, %1, £2, £3,... . Denote by
Ininap) a state with deuteron momenta n;/L and ny/L and electron momentum
p/L. The matrix elements of the Hamiltonian H; in this basis are

. 1 2
(n1nop'|Ha|ningp) = 6n1n, bnn,Opip(27 )zﬁ (nf +nj+ p;)

Vv

+ L Oppb(n1 — ny + 0y - nh)g(n1 — ny —ny +n3)
V [ ! [ /

= 7 0n5na8(n1 = i +p— p)g(n1 - n} —p+p)

1%
= Tonim8(p— P +ny —nd)g(p—p' —nz +m3),

(2.2)
where g is the function
1. 4 o 2 2 | N
g(a) = P sxn(jr:a) ~ o8 (7) + e cos(wa)] . (23)

" When the Hamiltonian H 1 is diagonalized, the eigenvector wave firictions are writ-
ten as linear combinations of the momentum eigenstates:

(21, 22, y) = f:ﬁ E Crangp€® £ 18168 Enava gidipy | (2.4)

nnap
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Fig. 1. One-dimensional piecewise linear periodic potential.

The center of mass motion is separated by changing coordinates to

= 2_:_'?(@1 +zat7y), | (2.5a)

r=xy - a,;z , (25b)
)+

n=y- =52, (2.5¢)

and integrating over R one obtains v(r, ) which is displayed below for some of the
relevant states. Of particular interest is the probability to find the (one-dimensional)
deuterons at a distance |z; — x3|. Integrating |¢(z1, 22, y)|? over all the other
variables and summing over both signs of &; — 25, one obtains

P21 = 23l) = [(|21 — 22 )))?

2 ' |21 — 2y
— ! 1 *
S E cos | m(ny —nj —ngy + n2)—-——L Cn1napCainip »

n,n'l
’
nan,p

(2.6)

where 3’ means that the sum is restricted to n; — n} + nz — ny = 0. The value
of p(|£1 — 23]) in the neighborhood of |z; — 23| = 0 characterizes the near collision
probability. :

For the discussion below the parameters were fixed at values of physical interest
for the deuteron—electron system, namely V = 6, L = 13039, and v = 2.7 x 10~4.
Being interested in deuteron collision states at low energies we look for the structure
of the negative energy states. This structure is easily understood in general grounds.
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Due to the large values of 1/, negative energy states of zero total momentum are

of the form -

Z enln — n 0)

n=-00

with ¢, = c_,, the exact values of the coefficients ¢, depending on the potential.
The electron being strongly delocalized is energetically favorable to separate the
deuterons. Hence, in the ground state, the coefficients ¢, must alternate in sign,
otherwise the cosines would pile up at the origin (r = 0). Conversely for the state
at the top of the negative energy band all signs are equal and the wave function has
a large value at the origin.

Using a basis with 729 states a numerical diagonalization of LH, is performed in
the zero total momentum subspace. In Fig. 2 are plotted the (un-normalized) values
of p(Jz1 —z3]) = [¥(|z1 — z2])|? at the origin, from the ground state up to an energy
value equal to 7. One sees that large p(0)’s are only found at the top of the negative
energy band. The state with the largest p(0) is the one with the highest energy in
the band. It appears at all degrees of resolution in the study of the band, that is
for all finite numbers of basis states used in the diagonalization. Such states will be
called the primary collision states. The number of other states with non-negligible
p(0) changes with the degree of resolution, meaning that they correspond to sharp
local peaks. Two of these states are seen in Fig. 2. Figures 3(a)-(c) display the wave
functions of the ground state, an intermediate state with p(0) # 0, and the state at
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Fig. 2. [¥(|z1 — z2|)]? at the origin in the negative energy band for the zero momentum subspace.



Near Collisions in a Coulomb System: Quantum Treatment 713

; 1 L1
40\///‘// // \
L1 L
35\//// // \
L—"1
30\//////‘/ \
L—"
25\// // L1 \
L L1
20— // //
15\// //
//
10~—"] —
//
5l
0l L

|n]

0o o
(b)

Fig. 3. Squared wave functions |(|r|, |n|)]*> for the ground state (a), an intermediate state with
2(0) # 0 (b), and the state at the top of the negative energy band (c).
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Fig. 3 (Continued)

the top of the negative energy band as functions of the relative deuteron distance
and the distance of the electron to the deuterons center of mass, ¥(|r|, |n]). Notice
the relatively small value of p(0) for the intermediate state.

The first primary collision state at the top of the band is still a negative energy
state, but is separated from the ground state by an energy of order 5¢?/aL. This
energy will be called the near collision gap. It is the energy needed to excite the
system from the ground state to a configuration with high collision probability.
Although this is merely a toy model, because parameters close to the Coulomb
intensities were used, it is instructive to discuss the physical significance of the near
collision energy gap. For the parameters that were used 5e2/al =~ 12.2510~1! erg.
To bridge this energy gap by thermal excitations would require temperatures on the
order of 10% K. However, this energy corresponds to an electromagnetic radiation
of wavelength 162 A. Hence the near collision quantum states might be excited by
resonant excitation using light in the ultraviolet range.

To excite the state with zero momentum at the top of the negative energy band
would require a fine tuning of the excitation energy. However, if the zero total
momentum restriction is lifted, the situation is more favorable because there are
more collision states. This is shown in Fig. 4 where p(0) is plotted for (a finite
basis approximation of) the negative energy band using 729 basis states without
restrictions on the total momentum. '
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Fig. 4. |¥(|z1 — 22])|? at the origin in the negative energy band.

3. Three-Dimensional Case

For the three-dimensional case, consider two positively charged particles of mass M
and a negatively charged one of mass m, in a box of side L with periodic boundary
conditions. The Hamiltonian is the Coulomb Hamiltonian of Eq. (1.5) with a pe-
riodicity condition on the potential to take into account the effect of the particles
in the boxes that surround the box under study. As the Coulomb potential terms
depend only on the radial variables r = |x; — x3| or |x; — y| one uses, for compu-
tational convenience, a mixed set of periodic boundary conditions. To compute the
matrix elements integrate on a cube for all variables that do not appear explicitly
in the potential. Then for r integrate on a sphere with the same volume as the
cube. Furthermore the potential is taken to be a periodic Coulomb potential. The
effect of most concern in this paper is the near collisions of particles. Therefore it
depends mostly on the Coulomb potential at short distances and must be relatively
insensitive to the kind of periodic boundary conditions that are imposed. In any
case the explicit consideration of a periodic Coulomb potential seemed the more
appropriate one, to be consistent with the periodic boundary conditions.

On a basis of box-normalized momentum eigenstates (L)~3/2 exp(i27k - x) the
matrix elements are

(ninyp’|H|nin;p)

1 p|?
= 631n 600, 5319(277)2? (lnl > + Ing)? + L,;I‘)
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7ny —

1 3 3 ! ! 1 ]
= 70un, (1 —my +p—p )m[l — cos(2mpjn; — nj))

l .
+ z&g,pé"(nl ~n} +n; —nj) T [1 = cos(27p|n; — ni|)]

1 1
—_ fég'x“l 63(p -— p’ + ng — ng)m[l -— cos(21rp|n2 = n’zl)] s
(3.1)

where p = (2)'/3 and Lny, Ln,, and Lp are the deuterons and electron momenta.
For a wave function

3
"b(xl’ X2, y) = ('L";/—z) E cn,ngpe‘%}nl.xlC”Enz'xzenﬁp'y, (32)

nynzp

the probability to find two deuterons at a distance [x; — x2| is

p(lx1 — x2]) = |¥(1x1 — xa[)?

. ' ' |x1 - x2|
dr — 5D (1r|n1 -nj —n2+n2|——i——— )
- - [+ Coi? 1/
3 — mnzptnin,p
L nin} xjn; —nf --n2+nfb,||—xl—x2|
ngnip L

(3.3)

where Z' means that the sum is restricted to n; —nj + ny — nj = 0.

When performing the numerical diagonalization of (3.1) one has now many more
variables than in the one-dimensional model of Sec. 2 and it is not possible to include
in the basis as many high momentum states as before. Therefore one expects that
here only the primary collision states may be identified. For all practical purposes
they are the more important anyway. Figure 5 shows the values of p(0) (for un-
normalized wave functions) in the negative energy part of the spectrum, obtained
from numerical diagonalization with a basis of 729 states at the zero total momen-
tum. One now sees several negative energy bands, but the qualitative conclusions
are similar to those of the one-dimensional model. The primary collision states
are at or near the top of the bands. For the lowest negative energy band the near
collision gap is =~ 6.5e2/aL which corresponds to a wavelength of 124 A. For the
numerical calculations I have been using L = 13039 in a units which corresponds
to L = 0.94 A. In Fig. 6 I have plotted the values of the near collision gap for the
lowest negative energy band, computed for other values of L. Therefore for L in
the range 0.94-3.7 A the wavelengtlis required to bridge the first near collision gap
are in the range 124-330 A.
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Fig. 5. |¢(|x1 —~x2[)|? at the origin for the negative energy bands in the zero momentum subspace
(three-dimensional problem).
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Fig. 6. Near collision gap (in €2/aL units) in the lowest energy band.
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4. Conclusions

The situation concerning near collision states in a Coulomb system is the following:

(a)

(b)

()

(d)

Classically it is found that the low enefgy near collision events in the many body
system have a small but non-negligible probability which is dominated by three-
body (DeD) processes.® This probability is estimated from phase space volume
considerations on the zero-energy surface. However, it is found that because
of angular momentum conservation, even under ergodic motion conditions, the
near collision region in phase space can only be accessed if one starts from very
small initial angular momentum. Access to these configurations may also be
hindered by the diffusion barriers of near integrable systems, that is KAM tori or
Mather cantori. This explains why the near collision rates obtained in numerical
simulations are substantially smaller than the phase space volume estimates.® In
the classical mechanics setting near collisions have therefore the characteristic
behavior of a large deviation effect with deviations towards smaller event rates
in finite samples. Also, in the classical mechanics setting it is not clear how
the situation might be changed, diffusion barriers and angular momenta being
difficult to control at the microscopic level.

In quantum mechanics the situation looks different. This is no surprise because
semiclassical considerations are not supposed to be reliable for the low energy
levels that concern us here.” Instead of a constant energy surface with different
types of behavior in it (foliated by conservation laws and approximate tori) we
have a splitting of the negative energy levels into bands with the dominant near
collision states staying at the top of the bands. The typical bandwidths are
estimated to be too large to allow for excitation of the near collision states by
random thermal excitations. This emphasizes, once more, how unlikely it is
to obtain spontaneous cold fusion. However, the near collision states might be
accessed by resonant excitation with electromagnetic radiation in the ultraviolet
range. ‘

As I have stated before, it is tempting to think of profiting from the hydrogen
isotope confining properties of some metallic lattices to obtain a fusion device,
provided an additional excitation mechanism is found that is sufficiently soft
to preserve the lattice. This mixed approach is what I have called the hybrid
Jusion approach.® The results of the quantum systems studied above suggest
that such a mechanism might consist in the excitation of the quantum near
collision states by electromagnetic radiation. The performance of this scheme
will depend critically on a good tuning up of the excitation radiation. As the
required excitation energies are of the order of the bandwidths in the negative
energy region, they could be found from absorption experiments.

For the detection of fusion events in the above setting notice that the three-
body nature of the process may tend to select the 7'+ p channel as the preferred

Ol’le.8
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