Introduction to quantum computing

R. Vilela Mendes

Quantum computation basic features

Classical computers: a bit is a unit of information, takes values 0 or 1 . Quantum computers: a qubit corresponds to a two-state system, that is, a unit vector in the space C^{2}
$|0\rangle \leftrightarrow(1,0)$
$|1\rangle \leftrightarrow(0,1)$
(Notice the existence of states $\alpha|0\rangle+\beta|1\rangle \quad \forall \alpha, \beta \in C$ (Superposition)
For n qubits the space would be $C^{2} \otimes C^{2} \otimes \cdots \otimes C^{2}$.
Factorizable states

$$
\left(\alpha_{1}|0\rangle+\beta_{1}|1\rangle\right) \times\left(\alpha_{2}|0\rangle+\beta_{2}|1\rangle\right)
$$

Non-factorizable states.
(Entanglement)

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Quantum computation basic features

The state

$$
\frac{1}{\sqrt{2^{n}}} \sum_{i_{1}, i_{2}, \ldots, i_{n}=0}^{1}\left|i_{1}, i_{2}, \ldots, i_{n}\right\rangle
$$

is a superposition of all basis states of n qubits. Applying a unitary operation U_{f} : (Reversible)

$$
\frac{1}{\sqrt{2^{n}}} \sum_{i_{1}, i_{2}, \ldots, i_{n}=0}^{1}\left|i_{1}, i_{2}, \ldots, i_{n}\right\rangle \longmapsto \frac{1}{\sqrt{2^{n}}} \sum_{i_{1}, i_{2}, \ldots, i_{n}=0}^{1}\left|f\left(i_{1}, i_{2}, \ldots, i_{n}\right)\right\rangle .
$$

Applying U_{f} once computes f simultaneously on all the 2^{n} possible inputs (Exponential Parallelism)
To extract the exponential information one has to observe the system (collapse of the wave function)
Interference : exponentially many computations done in parallel may cancel in such a way that only the computations we are interested in remain. It is the combination of exponential parallelism and interference what makes quantum computation powerful.

A Model of Quantum Computation

System of two-state quantum particles (qubits)
n qubits $\in \mathcal{C}^{2} \otimes \mathcal{C}^{2} \otimes \cdots \otimes \mathcal{C}^{2}$
Natural basis (2^{n} vectors) :

$$
\begin{aligned}
& |0\rangle \otimes|0\rangle \otimes \cdots \otimes|0\rangle \\
& |0\rangle \otimes|0\rangle \otimes \cdots \otimes|1\rangle
\end{aligned}
$$

:

$$
|1\rangle \otimes|1\rangle \otimes \cdots \otimes|1\rangle
$$

Denote

$$
\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{n}\right\rangle=\left|i_{1}, i_{2}, \ldots, i_{n}\right\rangle \equiv|i\rangle
$$

$i_{1}, i_{2}, \ldots, i_{n}=$ binary representation of the integer i, between 0 and $2^{n}-1$ (encoding of integers)
General state :

$$
\sum_{i=0}^{2^{n}-1} c_{i}|i\rangle
$$

$$
\sum_{i}\left|c_{i}\right|^{2}=1
$$

A Model of Quantum Computation

Initial state :

Elementary operations \rightarrow logical gates
Quantum evolution of an isolated system is described by a unitary matrix $U U^{+}=I$
Quantum gate on k qubits $=$ unitary matrix U of dimension $2^{k} \times 2^{k}$
(1) NOT gate (operating on one qubit)

$$
N O T=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{gathered}
|0\rangle=\binom{1}{0} \text { and }|1\rangle=\binom{0}{1} . \text { Then } \operatorname{NOT}|0\rangle=|1\rangle \text { and } \operatorname{NOT}|1\rangle=|0\rangle \\
\operatorname{NOT}\left(c_{0}|0\rangle+c_{1}|1\rangle\right)=c_{0}|1\rangle+c_{1}|0\rangle .
\end{gathered}
$$

NOT gate operating on the first qubit of $\sum_{i} c_{i}\left|i_{1} i_{2} \ldots i_{n}\right\rangle$

$$
\sum_{i} c_{i}\left(N O T\left|i_{1}\right\rangle\right)\left|i_{2} \ldots i_{n}\right\rangle=\sum_{i} c_{i}\left|\neg i_{1} i_{2} \ldots i_{n}\right\rangle
$$

A Model of Quantum Computation

(2) The controlled NOT gate (CNOT, acting on two qubits)

Computes the function: $(a, b) \longmapsto(a, a \oplus b)$
$(a \oplus b=(a+b) \bmod 2)$ with $a, b \in 0,1$

$$
\text { CNOT }=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow \begin{gathered}
00 \\
01 \\
10 \\
11 \\
\text { control;target }
\end{gathered}
$$

(also called the exclusive or XOR gate). Applies a NOT on the second (target) bit conditioned that the first (control) bit is 1
Black circle \rightarrow control bit

A Model of Quantum Computation

All classical Boolean functions can be transformed to quantum gates. Classical reversible gates make a permutation on classical strings. Are unitary. Non-reversible functions may be converted to reversible functions. A function f from n bits to m bits goes to a reversible function from $n+m$ bits to $n+m$ bits:

$$
f: i \longmapsto f(i) \quad \Longrightarrow \quad f_{r}:(i, j) \longmapsto(i, f(i) \oplus j) .
$$

(3) The AND gate, $(a, b) \longmapsto a b$ becomes the Toffoli gate $(a, b, c) \longmapsto(a, b, a b \oplus c)$, described by a unitary matrix on three qubits:

A Model of Quantum Computation

The Toffoli gate applies NOT to the last bit, conditioned that the other bits are 1
The Toffoli gate

A Model of Quantum Computation

(4) A non-classical gate: a general rotation on one qubit:

$$
G_{\theta, \phi}=\left(\begin{array}{ll}
\cos (\theta) & \sin (\theta) e^{i \phi} \\
-\sin (\theta) e^{-i \phi} & \cos (\theta)
\end{array}\right)
$$

- Quantum computation $=$ sequence of elementary quantum gates on the qubits

$$
|i\rangle \rightarrow|\alpha\rangle \in C^{2^{n}}
$$

To extract the output from this state \rightarrow measurement
If $|\alpha\rangle=\sum_{i} c_{i}\left|i_{1}, \ldots i_{n}\right\rangle$, a measurement of the first qubit gives 0 with probability $\operatorname{Prob}(0)=\sum_{\mathrm{i}_{2}, \ldots \mathrm{i}_{\mathrm{n}}}\left|\mathrm{c}_{0, \mathrm{i}_{2}, \ldots \mathrm{i}_{\mathrm{n}}}\right|^{2}$, and $|\alpha\rangle$ collapses to

$$
\frac{1}{\sqrt{\operatorname{Prob}(0)}} \sum_{i_{2}, \ldots i_{n}} c_{0, i_{2}, \ldots i_{n}}\left|0, i_{2}, \ldots i_{n}\right\rangle
$$

and gives 1 with probability $\operatorname{Prob}(1)=\sum_{\mathrm{i}_{2}, \ldots \mathrm{i}_{\mathrm{n}}}\left|\mathrm{c}_{1, \mathrm{i}_{2}, \ldots \mathrm{i}_{n}}\right|^{2},|\alpha\rangle$ collapsing then to

$$
\frac{1}{\sqrt{\operatorname{Prob}(1)}} \sum_{i_{2}, i_{n}} c_{1, i_{2}, \ldots i_{n}}\left|1, i_{2}, \ldots i_{n}\right\rangle,
$$

A Model of Quantum Computation

Example:

$$
\frac{1}{\sqrt{3}}(|00\rangle+|01\rangle-|11\rangle)
$$

The probability to measure 0 in the left qubit is $2 / 3$, and the probability to measure 1 is $1 / 3$. Afterwards the state collapses to $\frac{1}{\sqrt{2}}(|00\rangle+|01\rangle)$ with probability $\operatorname{Pr}(0)=2 / 3$ and to $-|11\rangle$ with probability $\operatorname{Pr}(1)=1 / 3$. The output is in general probabilistic
(5) Hadamard gate: a quantum subroutine that generates a random bit.

$$
H=\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

Applying the gate on a qubit in the state $|0\rangle$ or $|1\rangle$, yields $\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)$. A measurement of this qubit yields a random bit.

Universal quantum gates

Classical reversible computation

There is a single universal gate (the Toffoli gate). It computes the function

$$
a, b, c \longmapsto a, b, a b \oplus c
$$

Any reversible function can be represented as a concatenation of Toffoli gates on different inputs
\# For the AND gate on a, b, input $c=0$, and the last bit contains $a b \oplus 0=\operatorname{AND}(a, b)$
\# For the NOT gate (on the third bit), set the first two bits to 1 Now the NOT and AND gates are universal.

Quantum case

Here the operations are continuous
A unitary matrix U is approximated to within ε by U^{\prime} if $\left|U-U^{\prime}\right| \leq \varepsilon$ Because unitary evolution preserves the norm, if S gates are used it suffices to approximate each one to within $O\left(\frac{\varepsilon}{S}\right)$
A set of quantum gates is called universal if for any ε and any U, U can be approximated to within ε by a sequence of gates of the set

Universal quantum gates

Several different sets
Examples:

1) D. Deutsch; Proc. Roy. Soc. London A 425 (1989) 73

The NOT matrix in the Toffoli gate is replaced by another unitary matrix on one qubit, Q, such that Q^{n} approximates any $2 \otimes 2$ matrix. Consider the two following matrices:

$$
R=\left(\begin{array}{ll}
\cos (2 \pi \alpha) & \sin (2 \pi \alpha) \\
-\sin (2 \pi \alpha) & \cos (2 \pi \alpha)
\end{array}\right), W=\left(\begin{array}{ll}
1 & 0 \\
0 & e^{i 2 \pi \alpha}
\end{array}\right)
$$

α irrational, chosen such that the sequence

$$
\alpha \bmod 1,2 \alpha \bmod 1,3 \alpha \bmod 1, \cdots
$$

hits the ϵ-neighborhood of any number in $[0,1]$, within poly $\left(\frac{1}{\epsilon}\right)$ steps

Universal quantum gates

\# The generalized Toffoli gates $\left\{R_{n}, W_{n}\right\}$ with $Q=R$ and W are a universal set

Sketch of the proof :

With R any rotation in the real plane is approximated, and with W any rotation in the complex plane.
Consider $\left\{R_{3}, W_{3}\right\}$. Given an arbitrary 8×8 unitary matrix U, denote its eigenvectors as $\left|\psi_{j}\right\rangle$ with eigenvalues $e^{i \theta_{j}} . U$ is determined by
$U\left|\psi_{j}\right\rangle=e^{i \theta_{j}}\left|\psi_{j}\right\rangle$. Define $U_{k}\left|\psi_{j}\right\rangle=\left\{\begin{array}{ll}\left|\psi_{j}\right\rangle & \text { if } k \neq j \\ e^{i \theta_{k}}\left|\psi_{k}\right\rangle & \text { if } k=j\end{array}\right.$. Then
$U=U_{7} U_{6} \ldots . . U_{0}$.
U_{k} can be achieved by first taking $\left|\psi_{k}\right\rangle$ to $|111\rangle$ by a transformation T.
Then apply W the correct number of times to approximate
$|111\rangle \longmapsto e^{i \theta_{k}}|111\rangle$ and then we take $|111\rangle$ to $\left|\psi_{k}\right\rangle$ by T^{-1}
T is constructed with W and R. Therefore all three qubit operations are approximated.
By the same reasoning $\left\{R_{n}, W_{n}\right\}$ is dense in $U\left(2^{n}\right)$ and $\left\{R_{n}, W_{n}\right\}$ is obtained from $\left\{R_{3}, W_{3}\right\}$ by recursion.

Universal quantum gates

2) There is a sequence of two bit gates that constructs a matrix on three qubits of the form of a generalized Toffoli gate:

where $V=\sqrt{Q}$. Thus, two-qubit gates are universal.

Universal quantum gates

3) One-qubit matrix conditioned on other qubit can be expressed as a sequence of one-qubit matrices and $C N O T^{\prime}$ s. So the generalized Toffoli gate of Deutsch can be written as a finite sequence of one-qubit gates and CNOT's. This shows that
$\{$ One-qubit gates, CNOT $\}$ is universal
(Barenco et al.; Phys. Rev. A 52, 3457 (1995))

Quantum algorithms

Preparation of initial states and discrete Fourier Transform

Given $|i\rangle$, applying the Hadamard gate to each one of the qubits one obtains

$$
|i\rangle \xrightarrow{F T} \frac{1}{\sqrt{N}} \sum_{j}(-1)^{i \cdot j}|j\rangle
$$

i, j strings of length n and $i \cdot j=\sum_{k=1}^{n} i_{k} j_{k} \bmod 2$
(Discrete Fourier transform over the group Z_{2}^{n})
$F T^{-1}=F T$
If $|i\rangle=\left|0^{n}\right\rangle$ one obtains $\frac{1}{\sqrt{N}} \sum_{i=1}^{2^{n}}|i\rangle$
Deutsch and Jozsa's algorithm
f a Boolean function from $\{1, N\}$ to $\{0,1\}\left(N=2^{n}\right)$. It is asserted that $f(i)$ is either constant or balanced (half are 0 and half are 1). Distinguish between the two cases.

Query to an oracle : $|i\rangle|j\rangle \longmapsto|i\rangle|j \oplus f(i)\rangle$
(A classical algorithm needs $O(N)$ queries)

Quantum algorithms

Quantum algorithm :
$\left|0^{n}\right\rangle \otimes|1\rangle$
Apply Fourier transform on the first register
Apply Hadamard to the last qubit
$\Longrightarrow \quad \frac{1}{\sqrt{N}} \sum_{i=1}^{2^{n}}|i\rangle \otimes\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)$
Call the oracle $\rightarrow|i\rangle|j\rangle \longmapsto|i\rangle|j \oplus f(i)\rangle$
$\Longrightarrow \quad \frac{1}{\sqrt{N}} \sum_{i=1}^{2^{n}}(-1)^{f(i)}|i\rangle \otimes\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)$
Apply the inverse Fourier transform to the first register

$$
\Longrightarrow \quad|\psi\rangle \otimes\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)
$$

Measure the first register If the result is $0^{n} \Longrightarrow f$ is CONSTANT Else $\Longrightarrow f$ is BALANCED
Measurement is done by projecting on $\left|0^{n}\right\rangle$. If f is constant the probability is one. If f is balanced the probability is zero.

The RSA cryptosystem (Rivest, Shamir, Adleman, 1977)

Public key system (trapdoor one-way function). Security based on the difficulty of factoring large integers, $t(n) \sim \exp \left(n^{1 / 3}\right)$
\# AT THE RECEIVER END
Pick $N=p q, p$ and q two distinct large odd primes
Choose at random E coprime with $\phi(N)=(p-1)(q-1)$
Compute $B=E^{-1} \bmod \phi(N)$
PUBLIC KEY $=(E, N)$
PRIVATE KEY $=(B, N)$
Broadcast public key, keep private key for yourself \# SENDER
Code each symbol in the message as a number from 0 to $n-1$ according to some known code $\left\{M_{i}\right\}$
Compute $\left\{C_{i}=M_{i}^{E} \bmod N\right\}$
Send $\left\{C_{i}\right\}$
\# RECEIVER
Compute $\left\{C_{i}^{B} \bmod N=M_{i}\right\}$

Cracking RSA with quantum computers

- Let the message be M^{E}
- Find order r of $M^{E} \bmod N(r$ is also the order of M because E is coprime to $(P-1)(Q-1))$
- Find $D^{\prime}=E^{-1} \bmod r$ (Euclid's algorithm)
- $\left(M^{E}\right)^{D^{\prime}}=M \bmod N\left(\right.$ because $\left.M^{r}=1 \bmod N\right)$

Finding order mod N. Shor's algorithm
Basic idea: create a state with periodicity r and then apply Fourier transform over Z_{Q} to reveal the periodicity
Fourier transform over Z_{Q}

$$
|a\rangle \rightarrow \frac{1}{\sqrt{Q}} \sum_{b=0}^{Q-1} e^{2 \pi i a b / Q}|b\rangle
$$

Shor's algorithm

- $|\overrightarrow{0}\rangle \otimes|\overrightarrow{0}\rangle$
- Apply Fourier transform over Z_{Q} on the first register

$$
\frac{1}{\sqrt{Q}} \sum_{l=0}^{Q-1}|I\rangle \otimes|\overrightarrow{0}\rangle
$$

- Call subroutine that computes $|I\rangle|d\rangle \rightarrow|I\rangle\left|d \oplus Y^{\prime} \bmod N\right\rangle$ $\frac{1}{\sqrt{Q}} \sum_{l=0}^{Q-1}|I\rangle \otimes\left|Y^{l} \bmod N\right\rangle$
- Measure the second register

$$
\left.\frac{1}{\sqrt{A}} \sum_{l=0 \mid Y^{\prime}=Y^{\prime} 0}^{Q-1}|I \otimes| Y^{I_{0}}\right\rangle=\frac{1}{\sqrt{A}} \sum_{j=0}^{A-1}\left|j r+I_{0}\right\rangle \otimes\left|Y^{I_{0}}\right\rangle
$$

- Apply Fourier tarnsform over Z_{Q} on the first register

$$
\frac{1}{\sqrt{Q}} \sum_{k=0}^{Q-1}\left(\frac{1}{\sqrt{A}} \sum_{j=0}^{A-1} e^{2 \pi i\left(j r+1_{0}\right) k / Q}\right)|k\rangle \otimes\left|Y^{I_{0}}\right\rangle
$$

- Measure the first register. Let k_{1} be the result.
- Approximate the fraction $\frac{k_{1}}{Q}$ by a fraction with denominator smaller than N using continued fractions.
- If the denominator d does not satisfy $Y^{d}=1 \bmod N$, throw it away.

Else call the denominator r_{1}.

- Repeat all previous steps poly $(\log (\mathrm{N}))$ times to get $r_{1}, r_{2}, r_{3}, \ldots$
- Output the minimal r.

Physical implementations of quantum computation

Cold trapped ions, quantum dots, nuclear magnetic resonance, superconducting qubits, optical qubits, ...
Requirements

- To store qubits reliably
- A set of universal gates
- Reliable measurement of the qubit states
- Error correction to compensate for decoherence effects

One-qubit quantum gates on single atoms
Rabi oscillations

Physical implementations of quantum computation

$$
\binom{|g\rangle}{|e\rangle} \rightarrow\binom{\cos \left(\Omega_{R} t\right)|g\rangle+\sin \left(\Omega_{R} t\right)|e\rangle}{-\sin \left(\Omega_{R} t\right)|g\rangle+\cos \left(\Omega_{R} t\right)|e\rangle}
$$

For $\Omega_{R} t=\frac{\pi}{2}$ it is the transformation $\bar{H}=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)$
Together with phase shifts

$$
\binom{|g\rangle}{|e\rangle} \rightarrow\binom{|g\rangle}{\exp (i \theta)|e\rangle}
$$

by non-resonant laser field \Longrightarrow all unitary transformations on one-qubit The ion trap

Physical implementations of quantum computation

The conditional sign gate (CS)

$$
\left(\begin{array}{l}
\left|0_{i} 0_{j}\right\rangle \\
\left|0_{i} 1_{j}\right\rangle \\
\left|1_{i} 0_{j}\right\rangle \\
\left|1_{i} 1_{j}\right\rangle
\end{array}\right) \rightarrow\left(\begin{array}{r}
\left|0_{i} 0_{j}\right\rangle \\
\left|0_{i} 1_{j}\right\rangle \\
\left|1_{i} 0_{j}\right\rangle \\
-\left|1_{i} 1_{j}\right\rangle
\end{array}\right)
$$

$\mathrm{CNOT}=\bar{H} \circ \mathrm{CS} \circ \bar{H}$

Physical implementations of quantum computation

Measuring the qubits. The quantum-jump technique

Photo-
 Detector

Physical implementations of quantum computation

Flying qubits

Atoms

Physical implementations of quantum computation

Photons

Physical implementations of quantum computation

Cavity quantum electrodynamics

Other implementations. See for example http://quantum.phys.cmu.edu/QCQI/QC_CMU1

