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Quantum computation basic features

Classical computers: a bit is a unit of information, takes values 0 or 1.
Quantum computers: a qubit corresponds to a two-state system, that is,
a unit vector in the space C?

0) < (1,0)

1) < (0,1)

(Notice the existence of states a|0) 4+ B|1) Va,B € C

(Superposition)

For n qubits the space would be C?® C?® --- ® C2.

Factorizable states

(@1]0) + B4 |1)) x (a2[0) + B, 1))

Non-factorizable states.
(Entanglement)

(00) +[11))

Sl
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Quantum computation basic features

The state

is a superposition of all basis states of n qubits. Applying a unitary
operation Ur : (Reversible)
1 ! 1

1
2 |i11i21 'vin> | — 2 |f(l]_,/2,,ln)>
2" i Veﬁj1u

2y, in=0

Applying Ur once computes f simultaneously on all the 2" possible inputs
(Exponential Parallelism)

To extract the exponential information one has to observe the system
(collapse of the wave function)

Interference : exponentially many computations done in parallel may
cancel in such a way that only the computations we are interested in
remain. It is the combination of exponential parallelism and interference
what makes quantum computation powerful.

0 3/ 27



A Model of Quantum Computation

System of two-state quantum particles (qubits)

n qubits€ C2®C2® -+ - ®C?

Natural basis (2" vectors) :
0)®0)® - ©0)
0)®0)®--- 1)

He1)e---®1)
Denote
i) @ i) ® -+ @ |in) = |11, i2, ... in) = [i)
i1, 2, ..., i = binary representation of the integer /, between 0 and 2" — 1
(encoding of integers)
General state :
211

Z C,'|i> Z’C;|2:1

i=0



A Model of Quantum Computation

Initial state :
i)
Elementary operations — logical gates
Quantum evolution of an isolated system is described by a unitary matrix
uut =1
Quantum gate on k qubits = unitary matrix U of dimension 2% x 2k
(1) NOT gate (operating on one qubit)

01
wor-(91)
1 0
0) = < 0 ) and [1) = ( 1 ) Then NOT|0) = |1) and NOT|1) = |0)
NOT(C0|0> + C1|1>) = Co|1> + C1|0>.
NOT gate operating on the first qubit of Y, ¢;|i1fz...i)

ZC;(NOT|I'1>)’I'2...I',,> = Zcil_‘iliZ---in>

!



A Model of Quantum Computation

(2) The controlled NOT gate (CNOT, acting on two qubits)
Computes the function: (a, b) — (a,a @ b)
(a® b= (a+b) mod 2) with a,b € 0,1

1000 82

cvor=| OO0 10
000 1 ™
0010

control;target

(also called the exclusive or XOR gate). Applies a NOT on the second
(target) bit conditioned that the first (control) bit is 1
Black circle — control bit



A Model of Quantum Computation

All classical Boolean functions can be transformed to quantum gates.
Classical reversible gates make a permutation on classical strings. Are
unitary. Non-reversible functions may be converted to reversible functions.
A function f from n bits to m bits goes to a reversible function from

n 4+ m bits to n+ m bits:

foi— f(i) == fro (i) — (i, £(i) @J)-

(3) The AND gate, (a, b) — ab becomes the Toffoli gate
(a, b,c) — (a,b,ab@® c), described by a unitary matrix on three qubits:

1 000
1 001

1 010

1 011

1 100

1 101

110

: 1 : 111

o
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A Model of Quantum Computation

The Toffoli gate applies NOT to the last bit, conditioned that the other
bits are 1
The Toffoli gate

—{ NOT |—




A Model of Quantum Computation

(4) A non-classical gate: a general rotation on one qubit:

G = ( Tifffme—@ i?s(fe)f@ )

@ Quantum computation = sequence of elementary quantum
gates on the qubits
i) = |a) € C?
To extract the output from this state — measurement

If |o) =Y ci|i,...In), @ measurement of the first qubit gives 0 with
probability Prob(0) = Ziz i [€0,ip,...in|% and |a) collapses to

o, i),

\/IW ,ZZ,

and gives 1 with probability Prob(1) = ¥;, ; |c14,,..i,|% |) collapsing
then to

Z 9] I2,...I,,|1 /2 >




A Model of Quantum Computation

Example :

1
5 000 +[01) —11))
The probability to measure 0 in the left qubit is 2/3, and the probability
to measure 1 is 1/3. Afterwards the state collapses to % (]00) + |01))
with probability Pr(0) = 2/3 and to —|11) with probability Pr(1) = 1/3.
The output is in general probabilistic
(5) Hadamard gate: a quantum subroutine that generates a random bit.

11
V22

Applying the gate on a qubit in the state |0) or |1), yields - (|O> +11)).
A measurement of this qubit yields a random bit.
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Universal quantum gates

Classical reversible computation
There is a single universal gate (the Toffoli gate). It computes the function

a,b,c—— a, b, ab® c.

Any reversible function can be represented as a concatenation of Toffoli
gates on different inputs

# For the AND gate on a, b, input ¢ = 0, and the last bit contains
ab® 0= AND(a, b)

# For the NOT gate (on the third bit), set the first two bits to 1

Now the NOT and AND gates are universal.

Quantum case

Here the operations are continuous

A unitary matrix U is approximated to within ¢ by U’ if |[U — U'| <¢
Because unitary evolution preserves the norm, if S gates are used it
suffices to approximate each one to within O(¢)

A set of quantum gates is called universal if for any € and any U, U can be

approximated to within € by a sequence of gates of the set
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Universal quantum gates

Several different sets

Examples:

1) D. Deutsch; Proc. Roy. Soc. London A 425 (1989) 73
. D0 =€

-

—{ef—
The NOT matrix in the Toffoli gate is replaced by another unitary matrix
on one qubit, @, such that Q" approximates any 2 ® 2 matrix. Consider
the two following matrices :

R ( cos(2mta)  sin(27ta) > W < 10 ) .

—sin(27a) cos(27x) 0 ef?m

« irrational, chosen such that the sequence
amod 1,2a¢ mod 1,3a mod 1, - - -

hits the e-neighborhood of any number in [0, 1], within poly(%) steps:
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Universal quantum gates

# The generalized Toffoli gates {R,, W, } with Q = R and W are a
universal set

Sketch of the proof :

With R any rotation in the real plane is approximated, and with W any
rotation in the complex plane.

Consider {R3, W3}. Given an arbitrary 8 x 8 unitary matrix U, denote its
eigenvectors as |1/Jj> with eigenvalues e®i. U is determined by

. i . if k£ J
Uly,) = e’91|1pj>. Define Ux|y;) = { Ll:l‘Jk>|¢k> if k ij
U= UUs....Up.

Uk can be achieved by first taking |1, ) to |111) by a transformation T.
Then apply W the correct number of times to approximate

|111) —— e/|111) and then we take |111) to |y, ) by T~1

T is constructed with W and R. Therefore all three qubit operations are
approximated.

By the same reasoning {R,, W, } is dense in U (2") and {R,, W,} is

obtained from iRil Wii bi recursion. [l

. Then



Universal quantum gates

2) There is a sequence of two bit gates that constructs a matrix on three

qubits of the form of a generalized Toffoli gate:

Q V4 vt %

where V = +/Q. Thus, two-qubit gates are universal.
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Universal quantum gates

3) One-qubit matrix conditioned on other qubit can be expressed as a
sequence of one-qubit matrices and CNOT’s. So the generalized Toffoli

gate of Deutsch can be written as a finite sequence of one-qubit gates and
CNOT's. This shows that

{One-qubit gates, CNOT } is universal

(Barenco et al.; Phys. Rev. A 52, 3457 (1995))
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Quantum algorithms

Preparation of initial states and discrete Fourier Transform
Given |i), applying the Hadamard gate to each one of the qubits one
obtains

\fZ 1))

i,j strings of length nand i-j =Y }_; ixjx mod 2

(Discrete Fourier transform over the group ZJ)

FT-l=FT

If |/) = ]0") one obtains ﬁz,?ll i)

Deutsch and Jozsa’s algorithm
f a Boolean function from {1, N} to {0,1} (N =2"). It is
asserted that f (i) is either constant or balanced (half are 0 and
half are 1). Distinguish between the two cases.

Query to an oracle : |i)|j) — |)|j ® F(i))
(A classical algorithm needs O(N) queries)
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Quantum algorithms

Quantum algorithm :

07) @ 1)

Apply Fourier transform on the first register
Apply Hadamard to the last qubit

= LrZne (L0 - L)

Call the oracle — [i)|j) — |))|j & f(i))

— L0 e (Hlo) - Hi)
Apply the inverse Fourier transform to the first register
—  pe (Lo - L)

Measure the first register

If the result is 0" = f is CONSTANT

Else = f is BALANCED

Measurement is done by projecting on |0”). If f is constant the probability
is one. If f is balanced the probability is zero.
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The RSA cryptosystem (Rivest, Shamir, Adleman, 1977)

Public key system (trapdoor one-way function). Security based on the
difficulty of factoring large integers, t(n) ~ exp (n!/3)

# AT THE RECEIVER END

Pick N = pg , p and g two distinct large odd primes

Choose at random E coprime with ¢(N) = (p—1) (¢ — 1)

Compute B = E~1 mod ¢(N)

PUBLIC KEY = (E, N)

PRIVATE KEY = (B, N)

Broadcast public key, keep private key for yourself

# SENDER

Code each symbol in the message as a number from 0 to n — 1 according
to some known code {M;}

Compute {C; = ME mod N}

Send {G;}

# RECEIVER

Compute {CZmod N = M;}
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Cracking RSA with quantum computers

o Let the message be ME

o Find order r of ME mod N (r is also the order of M because E is
coprime to (P —1) (Q — 1))
e Find D' = E~! mod r (Euclid’s algorithm)

° (I\/IE)D/ = M mod N (because M" =1 mod N)

Finding order mod N. Shor’s algorithm

Basic idea: create a state with periodicity r and then apply Fourier
transform over Zg to reveal the periodicity
Fourier transform over Zg

Z 27tiab/ @ |b
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Shor’s algorithm

— —
[0)®][0)
Apply Fourier transform over Zg on the first register
LTt e |0)
Call subroutlne that computes |/)|d) — |/)|d ® Y/ mod N)
fz, S @] Y mod N)
Measure the second register

FE iy @ [Y0) = Tl ir + ) ® | Y®)
Apply Fourier tarnsform over Zg on the first register

%23;01 (ﬁ ZJA:—O1 e2m’(jr+/o)k/Q> k) @ | Yb)

Measure the first register. Let k; be the result.

Approximate the fraction % by a fraction with denominator smaller
than N using continued fractions.

If the denominator d does not satisfy Y¢ = 1mod N, throw it away.
Else call the denominator .

Repeat all previous steps poly(log(N)) times to get r1, r, r3, ...

@ Outﬁut the minimal r.



Physical implementations of quantum computation

Cold trapped ions, quantum dots, nuclear magnetic resonance,
superconducting qubits, optical qubits, - - -
Requirements

@ To store qubits reliably

@ A set of universal gates

@ Reliable measurement of the qubit states

@ Error correction to compensate for decoherence effects

One-qubit quantum gates on single atoms

Rabi oscillations
/;'\ —e— )
Laser |/‘\. ,
, \_/
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Physical implementations of quantum computation

( &) ) . ( cos(Qrt)|g) +sin(Qrt)le) )
le) —sin(Qgt)|g) + cos(Qgrt)|e)

For Qgt = J it is the transformation ﬁ:( _1 1 )

Together with phase shifts

( {g>> ) - ( exp<,-9>',i§ )

by non-resonant laser field = all unitary transformations on one-qubit
The ion trap




Physical implementations of quantum computation

The conditional sign gate (CS)

10;0;) |0,0/)
0i1;) | | 10i1))
1;05) 11;0;)
11:1;) —[1;1;)
@
i
(a) ®)
> I, e - \:)c:‘ T -/@i‘;nlje.\, (A ‘:;::“u =
£ ‘ Eo—Eom
@ I, J_.J.Ecm‘sz:j @ iw, ] \;i,:fi{
CNOT = Ho CS o H it — e
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Physical implementations of quantum computation

|8igj)|0) |£igj)|0) |&igj)|0) |&igj)|0)

|gi€j)|0) |giej)|0) |giej)|0) |giej)|0)

|eigj)|0) |gigj)|1) |gigj)|1) |eigj)|0)

|eiej)|0) |giej)|1) —|giej)|1) |eie;)[0)

Measuring the qubits. The quantum-jump technique
| ) Photo-
le) A Detector
& ®
5/ 8 P
S/ O /
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Physical implementations of quantum computation

Flying qubits
Atoms
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Physical implementations of quantum computation

Photons
pro™®
gou®®

s
B
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Physical implementations of quantum computation

Cavity quantum electrodynamics

Other implementations. See for example
http://quantum.phys.cmu.edu/QCQI/QC_CMU1
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