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Quantum computation basic features

Classical computers: a bit is a unit of information, takes values 0 or 1.
Quantum computers: a qubit corresponds to a two-state system, that is,
a unit vector in the space C 2

|0〉 ↔ (1, 0)
|1〉 ↔ (0, 1)
(Notice the existence of states α|0〉+ β|1〉 ∀α, β ∈ C
(Superposition)
For n qubits the space would be C 2 ⊗ C 2 ⊗ · · · ⊗ C 2.
Factorizable states

(α1|0〉+ β1|1〉)× (α2|0〉+ β2|1〉)

Non-factorizable states.
(Entanglement)

1√
2
(|00〉+ |11〉)
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Quantum computation basic features

The state
1√
2n

1

∑
i1,i2,...,in=0

|i1, i2, ..., in〉

is a superposition of all basis states of n qubits. Applying a unitary
operation Uf : (Reversible)

1√
2n

1

∑
i1,i2,...,in=0

|i1, i2, ..., in〉 7−→
1√
2n

1

∑
i1,i2,...,in=0

|f (i1, i2, ..., in)〉.

Applying Uf once computes f simultaneously on all the 2n possible inputs
(Exponential Parallelism)
To extract the exponential information one has to observe the system
(collapse of the wave function)
Interference : exponentially many computations done in parallel may
cancel in such a way that only the computations we are interested in
remain. It is the combination of exponential parallelism and interference
what makes quantum computation powerful.
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A Model of Quantum Computation

System of two-state quantum particles (qubits)
n qubits∈ C2 ⊗ C2 ⊗ · · · ⊗ C2
Natural basis (2n vectors) :

|0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉
|0〉 ⊗ |0〉 ⊗ · · · ⊗ |1〉
... · · · · · · · · · · · ·
|1〉 ⊗ |1〉 ⊗ · · · ⊗ |1〉

Denote
|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 = |i1, i2, ..., in〉 ≡ |i〉

i1, i2, ..., in = binary representation of the integer i , between 0 and 2n − 1
(encoding of integers)
General state :

2n−1
∑
i=0

ci |i〉 ∑
i
|ci |2 = 1
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A Model of Quantum Computation

Initial state :
|i〉

Elementary operations → logical gates
Quantum evolution of an isolated system is described by a unitary matrix
UU† = I
Quantum gate on k qubits = unitary matrix U of dimension 2k × 2k
(1) NOT gate (operating on one qubit)

NOT =
(
0 1
1 0

)
|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
. Then NOT |0〉 = |1〉 and NOT |1〉 = |0〉

NOT (c0|0〉+ c1|1〉) = c0|1〉+ c1|0〉.
NOT gate operating on the first qubit of ∑i ci |i1i2...in〉

∑
i
ci (NOT |i1〉)|i2...in〉 = ∑

i
ci |¬i1i2...in〉

() 5 / 27



A Model of Quantum Computation

(2) The controlled NOT gate (CNOT, acting on two qubits)
Computes the function: (a, b) 7−→ (a, a⊕ b)
(a⊕ b = (a+ b) mod 2) with a, b ∈ 0, 1

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

→
00
01
10
11

control;target

(also called the exclusive or XOR gate). Applies a NOT on the second
(target) bit conditioned that the first (control) bit is 1
Black circle → control bit v

⊕
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A Model of Quantum Computation

All classical Boolean functions can be transformed to quantum gates.
Classical reversible gates make a permutation on classical strings. Are
unitary. Non-reversible functions may be converted to reversible functions.
A function f from n bits to m bits goes to a reversible function from
n+m bits to n+m bits:

f : i 7−→ f (i) =⇒ fr : (i , j) 7−→ (i , f (i)⊕ j).
(3) The AND gate, (a, b) 7−→ ab becomes the Toffoli gate
(a, b, c) 7−→ (a, b, ab⊕ c), described by a unitary matrix on three qubits:

T =



1
1
1
1
1
1
0 1
1 0


→

000
001
010
011
100
101
110
111
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A Model of Quantum Computation

The Toffoli gate applies NOT to the last bit, conditioned that the other
bits are 1
The Toffoli gate

v
v

NOT
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A Model of Quantum Computation

(4) A non-classical gate: a general rotation on one qubit:

Gθ,φ =

(
cos(θ) sin(θ)e iφ

− sin(θ)e−iφ cos(θ)

)
Quantum computation = sequence of elementary quantum
gates on the qubits

|i〉 → |α〉 ∈ C 2n

To extract the output from this state → measurement

If |α〉 = ∑i ci |i1, ...in〉, a measurement of the first qubit gives 0 with
probability Prob(0) = ∑i2,...in |c0,i2,...in |2, and |α〉 collapses to

1√
Prob(0)

∑
i2,...in

c0,i2,...in |0, i2, ...in〉,

and gives 1 with probability Prob(1) = ∑i2,...in |c1,i2,...in |2, |α〉 collapsing
then to

1√
Prob(1)

∑
i2,...in

c1,i2,...in |1, i2, ...in〉,
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A Model of Quantum Computation

Example :
1√
3
(|00〉+ |01〉 − |11〉)

The probability to measure 0 in the left qubit is 2/3, and the probability
to measure 1 is 1/3. Afterwards the state collapses to 1√

2
(|00〉+ |01〉)

with probability Pr(0) = 2/3 and to −|11〉 with probability Pr(1) = 1/3.
The output is in general probabilistic
(5) Hadamard gate: a quantum subroutine that generates a random bit.

H =

(
1√
2

1√
2

1√
2
− 1√

2

)

Applying the gate on a qubit in the state |0〉 or |1〉, yields 1√
2
(|0〉 ± |1〉).

A measurement of this qubit yields a random bit.
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Universal quantum gates

Classical reversible computation
There is a single universal gate (the Toffoli gate). It computes the function

a, b, c 7−→ a, b, ab⊕ c.
Any reversible function can be represented as a concatenation of Toffoli
gates on different inputs
# For the AND gate on a, b, input c = 0, and the last bit contains
ab⊕ 0 = AND(a, b)
# For the NOT gate (on the third bit), set the first two bits to 1
Now the NOT and AND gates are universal.
Quantum case
Here the operations are continuous
A unitary matrix U is approximated to within ε by U ′ if |U − U ′| ≤ ε
Because unitary evolution preserves the norm, if S gates are used it
suffi ces to approximate each one to within O( ε

S )
A set of quantum gates is called universal if for any ε and any U, U can be
approximated to within ε by a sequence of gates of the set
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Universal quantum gates

Several different sets
Examples:
1) D. Deutsch; Proc. Roy. Soc. London A 425 (1989) 73

s
s
Q

The NOT matrix in the Toffoli gate is replaced by another unitary matrix
on one qubit, Q, such that Qn approximates any 2⊗ 2 matrix. Consider
the two following matrices :

R =
(

cos(2πα) sin(2πα)
−sin(2πα) cos(2πα)

)
,W =

(
1 0
0 e i2πα

)
.

α irrational, chosen such that the sequence

α mod 1, 2α mod 1, 3α mod 1, · · ·
hits the ε-neighborhood of any number in [0, 1], within poly( 1ε ) steps.
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Universal quantum gates

# The generalized Toffoli gates {Rn,Wn} with Q = R and W are a
universal set
Sketch of the proof :
With R any rotation in the real plane is approximated, and with W any
rotation in the complex plane.
Consider {R3,W3}. Given an arbitrary 8× 8 unitary matrix U, denote its
eigenvectors as |ψj 〉 with eigenvalues e iθj . U is determined by

U |ψj 〉 = e iθj |ψj 〉. Define Uk |ψj 〉 =
{
|ψj 〉 if k 6= j
e iθk |ψk 〉 if k = j

. Then

U = U7U6....U0.
Uk can be achieved by first taking |ψk 〉 to |111〉 by a transformation T .
Then apply W the correct number of times to approximate
|111〉 7−→ e iθk |111〉 and then we take |111〉 to |ψk 〉 by T−1
T is constructed with W and R. Therefore all three qubit operations are
approximated.
By the same reasoning {Rn,Wn} is dense in U (2n) and {Rn,Wn} is
obtained from {R3,W3} by recursion. �
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Universal quantum gates

2) There is a sequence of two bit gates that constructs a matrix on three
qubits of the form of a generalized Toffoli gate:

v
v

Q

= l lv v
v v v

V VV †

where V =
√
Q. Thus, two-qubit gates are universal.
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Universal quantum gates

3) One-qubit matrix conditioned on other qubit can be expressed as a
sequence of one-qubit matrices and CNOT ′s. So the generalized Toffoli
gate of Deutsch can be written as a finite sequence of one-qubit gates and
CNOT ′s. This shows that

{One-qubit gates, CNOT} is universal

(Barenco et al.; Phys. Rev. A 52, 3457 (1995))
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Quantum algorithms

Preparation of initial states and discrete Fourier Transform
Given |i〉, applying the Hadamard gate to each one of the qubits one
obtains

|i〉 FT−→ 1√
N

∑
j
(−1)i ·j |j〉

i , j strings of length n and i · j = ∑n
k=1 ik jk mod 2

(Discrete Fourier transform over the group Z n2 )
FT−1 = FT
If |i〉 = |0n〉 one obtains 1√

N
∑2n
i=1 |i〉

Deutsch and Jozsa’s algorithm

f a Boolean function from {1,N} to {0, 1} (N = 2n). It is
asserted that f (i) is either constant or balanced (half are 0 and
half are 1). Distinguish between the two cases.

Query to an oracle : |i〉|j〉 7−→ |i〉|j ⊕ f (i)〉
(A classical algorithm needs O(N) queries)
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Quantum algorithms

Quantum algorithm :
|0n〉 ⊗ |1〉
Apply Fourier transform on the first register
Apply Hadamard to the last qubit
=⇒ 1√

N
∑2n
i=1 |i〉 ⊗

(
1√
2
|0〉 − 1√

2
|1〉
)

Call the oracle → |i〉|j〉 7−→ |i〉|j ⊕ f (i)〉
=⇒ 1√

N
∑2n
i=1 (−1)

f (i ) |i〉 ⊗
(
1√
2
|0〉 − 1√

2
|1〉
)

Apply the inverse Fourier transform to the first register
=⇒ |ψ〉 ⊗

(
1√
2
|0〉 − 1√

2
|1〉
)

Measure the first register
If the result is 0n =⇒ f is CONSTANT
Else =⇒ f is BALANCED
Measurement is done by projecting on |0n〉. If f is constant the probability
is one. If f is balanced the probability is zero.
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The RSA cryptosystem (Rivest, Shamir, Adleman, 1977)

Public key system (trapdoor one-way function). Security based on the
diffi culty of factoring large integers, t(n) ∼ exp

(
n1/3)

# AT THE RECEIVER END
Pick N = pq , p and q two distinct large odd primes
Choose at random E coprime with φ(N) = (p − 1) (q − 1)
Compute B = E−1 mod φ(N)
PUBLIC KEY = (E ,N)
PRIVATE KEY = (B,N)
Broadcast public key, keep private key for yourself
# SENDER
Code each symbol in the message as a number from 0 to n− 1 according
to some known code {Mi}
Compute {Ci = ME

i modN}
Send {Ci}
# RECEIVER
Compute {CBi modN = Mi}
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Cracking RSA with quantum computers

Let the message be ME

Find order r of ME mod N (r is also the order of M because E is
coprime to (P − 1) (Q − 1))
Find D ′ = E−1 mod r (Euclid’s algorithm)(
ME
)D ′

= M modN (because M r = 1 mod N)

Finding order mod N. Shor’s algorithm
Basic idea: create a state with periodicity r and then apply Fourier
transform over ZQ to reveal the periodicity
Fourier transform over ZQ

|a〉 → 1√
Q

Q−1
∑
b=0

e2πiab/Q |b〉
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Shor’s algorithm

|−→0 〉 ⊗ |−→0 〉
Apply Fourier transform over ZQ on the first register
1√
Q ∑Q−1

l=0 |l〉 ⊗ |
−→
0 〉

Call subroutine that computes |l〉|d〉 → |l〉|d ⊕ Y l modN〉
1√
Q ∑Q−1

l=0 |l〉 ⊗ |Y l modN〉
Measure the second register
1√
A

∑Q−1
l=0|Y l=Y l0 |l〉 ⊗ |Y

l0〉 = 1√
A

∑A−1
j=0 |jr + l0〉 ⊗ |Y l0〉

Apply Fourier tarnsform over ZQ on the first register
1√
Q ∑Q−1

k=0

(
1√
A

∑A−1
j=0 e

2πi (jr+l0)k/Q
)
|k〉 ⊗ |Y l0〉

Measure the first register. Let k1 be the result.
Approximate the fraction k1

Q by a fraction with denominator smaller
than N using continued fractions.
If the denominator d does not satisfy Y d = 1modN, throw it away.
Else call the denominator r1.
Repeat all previous steps poly(log(N)) times to get r1, r2, r3, ...
Output the minimal r .
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Physical implementations of quantum computation

Cold trapped ions, quantum dots, nuclear magnetic resonance,
superconducting qubits, optical qubits, · · ·
Requirements

To store qubits reliably
A set of universal gates
Reliable measurement of the qubit states
Error correction to compensate for decoherence effects

One-qubit quantum gates on single atoms
Rabi oscillations
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Physical implementations of quantum computation

(
|g〉
|e〉

)
→
(

cos(ΩR t)|g〉+ sin(ΩR t)|e〉
− sin(ΩR t)|g〉+ cos(ΩR t)|e〉

)
For ΩR t = π

2 it is the transformation H=
(

1 1
−1 1

)
Together with phase shifts(

|g〉
|e〉

)
→
(

|g〉
exp (iθ) |e〉

)
by non-resonant laser field =⇒ all unitary transformations on one-qubit
The ion trap
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Physical implementations of quantum computation

The conditional sign gate (CS)
|0i0j 〉
|0i1j 〉
|1i0j 〉
|1i1j 〉

→


|0i0j 〉
|0i1j 〉
|1i0j 〉
−|1i1j 〉



CNOT = H◦ CS ◦ H
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Physical implementations of quantum computation

|gigj 〉|0〉
|giej 〉|0〉
|eigj 〉|0〉
|eiej 〉|0〉

→

|gigj 〉|0〉
|giej 〉|0〉
|gigj 〉|1〉
|giej 〉|1〉

→

|gigj 〉|0〉
|giej 〉|0〉
|gigj 〉|1〉
−|giej 〉|1〉

→

|gigj 〉|0〉
|giej 〉|0〉
|eigj 〉|0〉
−|eiej 〉|0〉

Measuring the qubits. The quantum-jump technique
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Physical implementations of quantum computation

Flying qubits
Atoms
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Physical implementations of quantum computation

Photons
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Physical implementations of quantum computation

Cavity quantum electrodynamics

Other implementations. See for example
http://quantum.phys.cmu.edu/QCQI/QC_CMU1
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