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Introduction

The security of public key cryptosystems is based on the diffi culty to
solve some number problems. For example the safety of the RSA
cryptosystem (Appendix 1) is based on the diffi culty of factorization.

Quantum computing (when available for a suffi cient number of
qubits) will solve the factorization problem in polynomial time,
making RSA unsafe (Appendix 2).

However if quantum algorithms raise this problem, they also provide
the cure by developing the safe quantum key distribution (QKD).

In parallel with QKD a strong effort is being carried out in the
development of quantum resistant (classical) cryptosysytems. See, for
example R. A. Perlner and D. A. Cooper; Quantum resistant public
key cryptography: a survey, IDtrust ’09 Proceedings and L. Chen;
Cryptography Standards in Quantum Time, IEEE Secur Priv. 15
(2017) 51-57.

Here I will focus on QKD.
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The no cloning theorem

At the root of quantum security (security based on quantum keys) is the
fact that a quantum state cannot be cloned without disturbing it.

Classical cloning

Quantum cloning
Would be the existence of a unitary operator U such that

U (|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉 ∀ψ, 〈ψ |ψ〉 = 1
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The no cloning theorem

It is impossible to clone a quantum state without disturbing it
Proof:
Let |ψ〉 and |φ〉 be two different states, |〈ψ |φ〉| < 1
Then if U exists

U (|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉
U (|φ〉 ⊗ |0〉) = |φ〉 ⊗ |φ〉

Because U is unitary

〈ψ |φ〉 〈0 |0〉 = 〈ψ |φ〉 〈ψ |φ〉

Then 〈0 |0〉 = 1 implies 〈ψ |φ〉 = 1, a contradiction.
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Private key criptography and quantum key distribution
(QKD)

Basic ideas (not necessarily exclusive to quantum security)
Private key cryptography: Key shared by sender and receiver
Example: Vernam cipher, Message + Key = Coded message �
Coded message - Key = Message
Requires safe exchange of the key and one-time use (one-time pad).
In the exchange of the key, discrepancies may arise by eavesdropping
or imperfections in the transmission line and detectors.
Information reconciliation and Privacy amplification aim at
correcting errors and decreasing the mutual information of an
eavesdropper with the secret key.
Examples: - For a key transmited through a noisy channel, reliability
is improved by division in blocks and parity checks. If an error is found
in a block, the process is iterated in that block (cascade protocol).
- Production of a shorter key by a hash function. If one suspects that
x bits of a n-length key are suspect, this produces a safer key.
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Private key criptography and quantum key distribution
(QKD)
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The BB84 protocol for QKD (Bennett, Brassard)

Two different qubit basis

ψ00 = |0〉 −→ |←→〉
ψ01 = |1〉 −→ |l〉
ψ10 =

1√
2
(|0〉+ |1〉) −→ |↗〉

ψ11 =
1√
2
(|0〉 − |1〉) −→ |↖〉

The sender (Alice) has two random bit sequences α and β. α is the
sequence to be sent, β decides which polarization is used (either the
(ψ00,ψ01) basis or the (ψ10,ψ11) basis). The qubits are now in states
that are not mutually orthogonal, and thus it is impossible to
distinguish all of them with certainty without knowing β.

The receiver (Bob) also has a random deciding sequence β′ which he
uses to decode the received signals generating a sequence α′. These
might be changed by noise or eavesdropping by a third party (Eve).
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The BB84 protocol for QKD (Bennett, Brassard)

Eve cannot be in possession of a copy of the qubits sent to Bob, by
the no-cloning theorem, unless she has made measurements. Her
measurements, however, risk disturbing a particular qubit with
probability 1

2 if she guesses the wrong basis.

After Bob has announced the reception, Alice and Bob communicate
through a public (unsafe) channel to determine where β and β′ are
different. They now discard the bits in α and α′ for which β and β′

are different.

Information reconciliation and privacy amplification follow =⇒ secret
key.
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BB84 with polarized photons

(Single photons, not beams!)
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BB84: An example
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BB84 under an intersect-resent atack
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B92 protocol

A simplified version of BB84. The key difference to BB84 is that only
two states are necessary rather than the 4 polarization states in
BB84. 0 is encoded as 0 degrees in the rectilinear basis and 1
encoded by 45 degrees in the diagonal basis.
Alice transmits to Bob a string of photons encoded with randomly
chosen bits but this time the bits Alice chooses dictates which bases
she must use. Bob randomly chooses a basis to measure but if he
chooses the wrong basis, he will not measure anything. Bob can
simply tell Alice after each bit she sends whether or not he measured
it correctly.
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The entangled pair protocol
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The entangled pair protocol

A source emits pairs of qubits in a maximally entangled state like:

|ψ〉 = 1√
2
(|l〉 |←→〉+ |←→〉 |l〉)

Alice and Bob measure their photons with one of three basis
randomly chosen from the horizontal-vertical with rotations
θ = 0, θ = π

8 , θ =
π
4

Alice and Bob release publicly which basis they have chosen for each
measurement. They separate the measurements into three groups:
• 1st group: Measurements using different orientations.
• 2nd group: Measurements using the same orientation.
• 3rd group: Measurements in which at least one of them failed to
register a particle.
Alice and Bob announce publicly only their results of the first group.
Thus, they can check if eavesdropping has taken place.
If no eavesdropper has perturbed the system, the second group is
used to establish a secure key. The third group is discarded.
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Practical implementations of QKD

Although everyday use of quantum computer is years ahead from
implementation, quantum key distribution is already a reality and heading
to commercialisation. Reliable quantum repeaters don’t exist yet,
something that constricts the range of a QKD network to a few hundred
kilometers.
Some QKD networks

The DARPA Quantum network has been running since 2004 in
Massachusetts, USA.
SECOQC, a computer network protected by quantum key distribution
was implemented in October 2008 in Vienna. Used 200 km of
standard fibre optic cable to interconnect six locations across Vienna
and the town of St Poelten located 69 km to the west.
The SwissQuantum network project installed in the Geneva
metropolitan area in March 2009, to validate the reliability and
robustness of QKD in continuous operation over a long time period in
a field environment. The quantum network operated for nearly 2 years
until the project was shut down in January 2011.
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Practical implementations of QKD

Chinese networks: May 2009, with a backbone network of four nodes
connecting a number of subnets.

The QUESS space mission, launched in August 2016. Is an
international QKD channel between China and the Institute for
Quantum Optics and Quantum Information in Vienna, Austria

The Tokyo QKD Network

Los Alamos National Laboratory, a QKD network since 2011.

For recent developments in quantum and quantum-resistant
cryptography see I.S. Kabanov et al.; Practical Cryptographic
Strategies in the Post-Quantum Era, AIP Conference Proceedings
1936 (2018) 020021.
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The quantum internet

In networks secured by QKD, the main communication tool are photons in
optical fibers or space. In classical networks, losses and noise are
compensated by amplification in repeaters. The no-cloning theorem makes
this feature unsuitable for quantum communications. To establish a global
network secured by QKD the attenuation and dephasing that limits direct
quantum links to hundreds of kilometers must be addressed.
Possible solutions:
- Entangled repeaters
- Quantum error correction. Example: Code |0〉 by |0000〉 and |1〉 by
|1111〉. If there is a qubit error, projection to a lower dimension subspace
mantains coherence.
- Quantum teleportation of a state |ψ〉 = α |0〉+ β |1〉
Let Alice and Bob share an entangled pair

|φ〉 = 1√
2
(|00〉+ |11〉)
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Quantum teleportation

Alice manipulates two qubits and Bob only one. Initial state (for Alice)

|ψ〉 ⊗ |φ〉 = 1√
2
{α |000〉+ α |011〉+ β |100〉+ β |111〉}

Alice acts on the initial state by UA = UH ⊗UCNOT ⊗ 1; H =
(
1 1
1 −1

)
UA

1√
2
{α |000〉+ α |011〉+ β |100〉+ β |111〉} =

(UH ⊗ 1⊗ 1)
1√
2
{α |000〉+ α |011〉+ β |110〉+ β |101〉}

=
1
2

{
|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉)

+ |10〉 (−α |0〉+ β |1〉) + |11〉 (−α |1〉+ β |1〉)

}
Alice now measures the first two qubits and sends that information by a
classical channel to Bob. Then he recovers |ψ〉 by acting on his qubit with
the appropriate operator.

R. Vilela Mendes CMAFCIO, Universidade de Lisboa http://label2.ist.utl.pt/vilela/ ()Quantum cryptography and quantum networks 18 / 21



Appendix 1: The RSA cryptosystem (Rivest, Shamir,
Adleman, 1977)

Public key system (trapdoor one-way function). Security based on the
diffi culty of factoring large integers, t(n) ∼ exp

(
n1/3)

# AT THE RECEIVER END
Pick N = pq , p and q two distinct large odd primes
Choose at random E coprime with φ(N) = (p − 1) (q − 1)
Compute B = E−1 mod φ(N)
PUBLIC KEY = (E ,N)
PRIVATE KEY = (B,N)
Broadcast public key, keep private key for yourself
# SENDER
Code each symbol in the message as a number from 0 to n− 1 according
to some known code {Mi}
Compute {Ci = ME

i modN} and Send {Ci}
# RECEIVER
Compute {CBi modN = Mi}
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Appendix 2: Cracking RSA with quantum computers

Let the message be ME

Find order r of ME mod N (r is also the order of M because E is
coprime to (P − 1) (Q − 1))
Find D ′ = E−1 mod r (Euclid’s algorithm)(
ME

)D ′
= M modN (because M r = 1 mod N)

Finding order mod N. Shor’s algorithm
Basic idea: create a state with periodicity r and then apply Fourier
transform over ZQ to reveal the periodicity
Fourier transform over ZQ

|a〉 → 1√
Q

Q−1
∑
b=0

e2πiab/Q |b〉
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Shor’s algorithm

|−→0 〉 ⊗ |−→0 〉
Apply Fourier transform over ZQ on the first register
1√
Q ∑Q−1

l=0 |l〉 ⊗ |
−→
0 〉

Call subroutine that computes |l〉|d〉 → |l〉|d ⊕ Y l modN〉
1√
Q ∑Q−1

l=0 |l〉 ⊗ |Y l modN〉
Measure the second register
1√
A

∑Q−1
l=0|Y l=Y l0 |l〉 ⊗ |Y

l0〉 = 1√
A

∑A−1
j=0 |jr + l0〉 ⊗ |Y l0〉

Apply Fourier tarnsform over ZQ on the first register
1√
Q ∑Q−1

k=0

(
1√
A

∑A−1
j=0 e

2πi (jr+l0)k/Q
)
|k〉 ⊗ |Y l0〉

Measure the first register. Let k1 be the result.
Approximate the fraction k1

Q by a fraction with denominator smaller
than N using continued fractions.
If the denominator d does not satisfy Y d = 1modN, throw it away.
Else call the denominator r1.
Repeat all previous steps poly(log(N)) times to get r1, r2, r3, ...
Output the minimal r .
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