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Uncertainty, fluctuations, volatility

In the modeling of the natural world, randomness, either intrinsic or
as a result of lack of knowlegde of all the variables, plays a central
role. However there are many different kinds of randomness,
that is what mathematical theories say.
Closely associated to randomness is the role of fluctruations. For
example, fluctuations are the hallmark of biological systems in action.
Compared to man-made machineries, biological systems fluctuate at
various levels, from an individual molecule to the whole cell as a
system. The critical role of fluctuations is evident at the transcription
initiation by the RNA polymerase and the assembly of the ribosome.
Also in population dynamics, ecology, creation of order through
disorder, etc. Some titles:
Order Through Disorder: The Characteristic Variability of Systems;
https://doi.org/10.3389/fcell.2020.00186
Randomness and Perceived-Randomness in Evolutionary Biology:
https://www.jstor.org/stable/20115499
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Uncertainty, fluctuations, volatility

The Impact of Environmental Fluctuations on Evolutionary Fitness
Functions: DOI: 10.1038/srep15211

Fluctuations, which usually come under the name of volatility also
play an important role in social sciences.
Shaken and stirred : explaining growth volatility: The World Bank,
ISBN 978-0-8213-4981-6. - 2001, p. 191-211
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Volatility in economics and its impact

The Guardian, February 12, 2012
R. Vilela Mendes CMFcIO, Universidade de Lisboa Academia das Ciências de Lisboa ()The mathematics of randomness and fluctuations 4 / 42



The Black-Scholes-Merton equation
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Volatility in economics and its impact

Wired, February 23, 2009

David Li’s Gaussian copula formula

Cn,R (u1, ..., un) = Φn,R (Φ−1(u1), ...,Φ−1(un))

Cn,R - joint distribution function
Φn,R - joint cumulative distribution function of a multivariate
Gaussian with correlation matrix R
Φ−1 - inverse cumulative distribution function of a standard
univariate normal distribution
Used by the derivatives departments of investment banks to price
CDO’s and credit rating agencies (Moody’s, Standard & Poor’s and
Fitch)
Based essentially in the same assumptions as BS.
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The mathematics of stochastic processes

The central limit theorem (CLT)
Let X1,X2, · · · ,Xn, · · · be independent random variables with means
{µk} and variances

{
σ2k < ∞

}
. Let µ = 1

n ∑n
k=1 µk and B

2 = ∑n
k=1 σ2k ,

then the distribution of S = X1+X2+···+Xn−nµ
B

P (S ≤ x) L→
n→∞

∫ x

−∞

1√
2π
e−x

2

converges to a Gaussian distribution. The critical assumption is finiteness
of the variances CLT is both a powerful result and a dangerous one
Because the variances of finite samples in an experiment are always finite,
one may be mislead into thinking that the superposition of many events is
always Gaussian. Coupled to the Markovian hypothesis, that is, the fact
that full knowledge of the present suffi ces to predict the future, may lead
to another dangerous assumptions that stochastic processes are mostly
Brownian motion (a Gaussian Markovian process).
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Not Gaussian, not Brownian (still Markovian, for now)

Lévy processes, X (0) = 0
a) stochastic continuity ∀t ≥ 0. (∀ε, lims→t P (|Xt − Xs | > ε) = 0)
b) increments are stationary and independent
c) has a càdlàg version
Related to Infinitely divisible distributions

X
d
= X (1/n)

1 + · · ·+ X (1/n)
n

PX = PX (1/n)
1
∗ · · · ∗ P

X (1/n)
n

φ (λ) = E
(
e iλX

)
= (φX (1/n) (λ))

n

Lévy-Kintchine

φX (λ) = e
Ψ(λ) = exp

{
ibλ− λ2c

2
+
∫
R

(
e iλx − 1− iλx1|x |<1

)
ν (dx)

}

ν ({0}) = 0
∫
R

(
1∧ |x |2

)
νdx < ∞
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Not Gaussian, not Brownian (still Markovian)

Decompose the Lévy process

Xt = X1 + (X2 − X1) + · · ·+ (Xt − Xt−1)
increments being independent and stationary, Xt is infinitely divisible

E
(
e iλXt

)
= exp {tΨ (λ)}

b → drift, c →diffusion, ν→jump measure
Lévy-Itô decomposition of the Lévy process
Ψ (λ) = Ψ(1) (λ) +Ψ(2) (λ) +Ψ(3) (λ) +Ψ(4) (λ)

Ψ(1) (λ) = ibλ

Ψ(2) (λ) =
λ2c
2

Ψ(3) (λ) =
∫
|x |≥1

(
e iλx − 1

)
ν (dx)

Ψ(4) (λ) =
∫
|x |<1

(
e iλx − 1− iλx

)
ν (dx)

Ψ(1) (λ) → drift, Ψ(2) (λ)→ Brownian motion, Ψ(3) (λ)→
Compound Poisson process, Ψ(4) (λ)→ Martingale with countable
number of jumps |x | < 1 in each finite time interval.
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Lévy processes: examples

Brownian motion
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Lévy processes: examples

Poisson process
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Lévy processes: examples

Jump diffusion
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Lévy processes: examples

Cauchy process

R. Vilela Mendes CMFcIO, Universidade de Lisboa Academia das Ciências de Lisboa ()The mathematics of randomness and fluctuations 13 / 42



Lévy processes: examples

Subordinator
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Processes with memory

A property of Brownian motion: selfsimilarity

{X (at)} d
= {bX (t)}

b = aH , the process is H−selfsimilar (H−s.s.) - (H = Hurst exponent)
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Are there other selfsimilar Gaussian processes?

Brownian motion selfsimilar, stationary increments and covariance

E [X (t)X (s)] = min (t, s) =
1
2
{t + s − |t − s |}

If {X (t) , t ≥ 0} has real values, is H-s.s. with stationary increments and
finite variance (E

[
X (1)2

]
< ∞), then its covariance is

E [X (t)X (s)] =
1
2

{
t2H + s2H − |t − s |2H

}
E
[
X (1)2

]
Fractional Brownian motion

(
for H 6= 1

2

)
It has Long-range dependance for H 6= 1

2

Define ξ (n) = X (n+ 1)− X (n)

r (n) = E [ξ (0) ξ (n)] =
1
2

{
(n+ 1)2H − 2n2H + (n− 1)2H

}
E
[
X (1)2

]
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Fractional Brownian motion

r (n) ∼
n→∞

2H (2H − 1) n2H−2E
[
X (1)2

]
, H 6= 1

2

r (n) = 0 , H = 1
2

0 < H < 1
2 , ∑∞

n=0 |r (n)| < ∞
H = 1

2 , uncorrelated
1
2 < H < 1 , ∑∞

n=0 |r (n)| = ∞

0 < H < 1
2 , r (n) < 0 , n ≥ 1 (negative correlation, antipersistent

process),
1
2 < H < 1, r (n) > 0 , n ≥ 1 (positive correlation, persistent process).
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Fractional Brownian motion (H=0.1)
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Fractional Brownian motion (H=0.3)
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Brownian motion (H=0.5)
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Fractional Brownian motion (H=0.7)
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Fractional Brownian motion (H=0.9)
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Fractional Lévy processes

Use an integral representation of fractional Brownian motion

BH (t)
d
= C

∫ t

0
K (t, s) dB (s)

K (t, s) =
(
t
s

)H− 1
2

(t − s)H−
1
2 −
(
H − 1

2

)
s
1
2−H

∫ t

s
xH−

3
2 (x − s)H−

1
2 dx

Replace B (s) by a square integrable Lévy process L (s)
Same covariance structure as FBM.
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The dynamics of exploited fish populations

A few years ago Niwa, studying 27 commercial fish stocks in the
North Atlantic, concluded that the variability in the population growth
(annual changes in the logarithm of population abundance S (t))

r (t) = ln
(
S (t + 1)
S (t)

)
is described by a Gaussian distribution.
The population variability would be a geometric random walk

r (t) =
dS (t)
S (t)

= σrdB (t)

The independence of the increments of Brownian motion implying
that r (t) is a purely random process.
A sobering conclusion. Natural processes that look purely random, are
processes that depend on some many uncontrollable variables that any
attempt to handle them is outside our reach. This would be a serious
blow to, for example, the implementation of sustentability measures.
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The dynamics of exploited fish populations

Reanalyze some of the same type of data: Spawning-stock biomass
(SSB) for commercial fish stocks in the North Atlantic. The SSB
time-series data is derived from age-based analytical assessments
estimated by the 2013 working groups of the International Council for
the Exploration of the Sea (ICES), based on the compilation of data
from sampling of fisheries (e.g. commercial catch-at-age) and from
scientific research surveys.
Select three North Atlantic stocks for which the annual time-series of
SSB covers at least 60 years: Northeast Arctic cod (Gadus morhua),
Arctic haddock (Melanogrammus aeglefinus) and the North Sea
autumn-spawning herring (Clupea harengus).
Autocorrelation functions for r (t) and |r (t)|

C (r , τ) =
E {r (t) r (t + τ)}

σ2

C (|r | , τ) = E {|r (t)| |r (t + τ)|}
σ2
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The dynamics of exploited fish populations
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The dynamics of exploited fish populations

Already for time lags of one year, autocorrelations are at noise level,
suggestive of uncorrelated processes.

However, if S (t) is indeed a geometrical Brownian motion, scaling
properties of r (t) should be checked

r∆ (t) = ln
{
S (t + ∆)
S (t)

}
=

∆

∑
i=1
r (t + i)

The geometrical Brownian motion hypothesis would imply(
E
{
r2∆
})1/2 v ∆1/2
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The dynamics of exploited fish populations
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The dynamics of exploited fish populations

At the species level the geometrical Brownian motion is not a good
hypothesis. Even for Herring, where the data seems to follow a
scaling law, the slope at large ∆ is closer to 0.7 than to 0.5.

Whatever is actually determining the stochastic process for each
species is somehow washed out when averaging over all the 27 species
as Niwa did. No surprise, recall the central limit theorem.

Reconstruct the dynamics of σ (t) from the data: Compute the local
value of σ (t) by the standard deviation of r (t). (6−years window).
The cumulative processes and scaling properties of R1 and R2

t

∑
i=1

σ (i) = β1t + R1 (t)

t

∑
i=1
ln σ (i) = β2t + R2 (t)
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The dynamics of exploited fish populations
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The dynamics of exploited fish populations

R1 and R2 obey an approximate scaling law with exponents H in the
range 0.8− 0.9. Hence R1 and R2 may be modelled by fractional
Brownian motion implying that the fluctuations of σ and ln σ, away
from an average value, are modeled by Gaussian fractional noise.
Alternative models for the population fluctuations

dS (t) = σ (t) S (t) dBt
σ (t) = β1 + α1 (BH1 (t)− BH1 (t − 1))

dS (t) = σ (t) S (t) dBt
ln σ (t) = β2 + α2 (BH2 (t)− BH2 (t − 1))

with the following values for the Hurst coeffi cients H1 and H2

H1 H2
Cod 0.86 0.87
Haddock 0.89 0.9
Herring 0.93 0.87
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The dynamics of exploited fish populations

The dynamics of the fluctuations is a species-dependent long range
memory process.

The cumulative amplitude fluctuations R1 R2
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Reconstruction of the market process

Geometric Brownian motion as a market model?

dSt
St

= µdt + σdB (t)

Consequeces:
Price increments would be log-normal

p
(
ln
ST
St

)
=

1√
2πσ2 (T − t)

exp

−
(
ln STSt −

(
µ− σ2

2

)
(T − t)

)2
2σ2 (T − t)


and selfsimilar, Law(X (at)) = Law(aHX (t)) with H = 1/2

E

∣∣∣∣S (t + ∆)− S (t)
S (t)

∣∣∣∣ ≈ ∆H
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Reconstruction of the market process

However
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Modification: Volatility as a process

dSt
St

(
•,ω′

)
= µt

(
•,ω′

)
dt + σt

(
•,ω′

)
dB (t)

reconstructed from market data

σ2t

(
•,ω′

)
= lim

ε→0
1
ε

{
E (log St+ε − log St )2

}
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Reconstruction of the market process

Volatility (σ)

Result: The log integral of the volatility is well represented by

t/δ

∑
n=0

log σ (nδ) = βt + Rσ (t)

Rσ (t) has selfsimilar properties

E |Rσ (t + ∆)− Rσ (t)| ∼ ∆H
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Reconstruction of the market process

dSt = µStdt + σtStdB (t)
log σt = β+ k

δ {BH (t)− BH (t − δ)}
δ is the temporal observation scale and H has values in the range 0.8− 0.9
(volatility clustering)

σ (t) = θe
k
δ {BH (t)−BH (t−δ)}− 1

2 (
k
δ )

2
δ2H
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Long memory or rough volatility?

Long-range correlation vs. roughness
p−variation of a process X (t)

Vp (0,T ) = sup
partitions

n

∑
k=1
|X (tk )− X (tk−1)|p

p−variation index I

I (X , |0,T ]) = inf {p > 0;Vp (0,T ) < ∞}

Hölder regularity (roughness)

Hr =
1
I

For fractional Brownian motion H = Hr
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Long memory or rough volatility?

Recent work (Gatheral) examining the roughness of high-frequency
data suggests H < 0.5. for the volatility. Contradiction with volatility
bclustering. How can it be consistent with long-memory in case
volatility is described by fBM.

Possible explanation: For high frequency data a path for which the
realized high-frequency roughness volatility is < 1

2 may have spot
volatility > 1

2 . The realized volatility at high frequency is strongly
afected by discretization (microstructure noise).

Alternatively one might have a process, not fBM, with H 6= Hr
Or even simpler: volatility driven by fractional Gaussian noise, not
fBM as in the model reconstructed from the data
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Long memory or rough volatility? fBM vs. fGN
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Interpretation and prediction

In conclusion: Mathematics, and in particular the mathematics of
stochastic processes, provides a framework to interpret the many
types of randomness and uncertainty that we face in the natural and
social phenomena.

Sometimes it may also provide a means to predict the future or the
outcome of certains actions. Rarely a sure prediction, but at least a
means to assign different degrees of probability to possible futures.
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Prediction yes, we need prediction, but beware of fortune
tellers

Caravaggio
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