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A problem and a technique

Plasma confinement in tokamaks and the H-mode
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H-mode, advanced modes and internal transport barriers
(ITB)
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A technique (stochastic solutions)

Exact solution of PDE: a kernel that by convolution with initial
condition provides a solution instance. Example: heat equation

∂tu(t, x) =
1
2

∂2

∂x2
u(t, x) with u(0, x) = f (x)

u (t, x) =
1

2
√

π

∫ 1√
t
exp

(
− (x − y)

2

4t

)
f (y) dy

Exact stochastic solution of PDE: is a stochastic process

u(t, x) = Ex f (Xt )

Ex the expectation value, starting from x , of Wiener process
dXt = dWt

They are both solutions in the sense that they both provide
algorithmic means to construct of a function satisfying the
specification. In the first case, an integration and in the second, the
simulation of a solution-independent process.
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Stochastic solutions

Deterministic algorithms grow exponentially with the dimension d of
the space, roughly Nd ( LN is linear size of the grid). Stochastic
simulation grows with the dimension of the process, of order d .

Deterministic algorithms aim at obtaining the solution in the whole
domain. Even if an effi cient deterministic algorithm exists, the
stochastic algorithm is competitive if only localized values are desired.

Each sample path is independent and paths starting from different
points are independent from each other. Stochastic algorithms are
the natural choice for parallel, for distributed computation and for
domain decomposition.

Handle equally well regular and complex boundary conditions.

New exact solutions for nonlinear problems (KPP, Navier-Stokes,
Poisson-Vlasov, Magnetohydrodynamics)
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Examples

Linear: Let L be an elliptic operator

L =
1
2 ∑

ij
aij

∂2

∂xi∂xj
+∑

i
bi (x , t)

∂

∂xi

aij nonnegative definite and uniformly elliptic ∑ij aij ξ i ξ j ≥ µ |ξ|2.
This elliptic operator is the generator of the process

dXi (t) = bi (x , t) dt + σi (x , t) dWi (t)

where a = σσT and the Wi’s are independent Brownian motions.
A terminal condition problem

∂u
∂t+Lu − V (x , t) u + f (x , t)=0

with u (x ,T ) = Φ (x)

u (x , t)=Ex ,t

{
Φ (XT ) e−

∫ T
t V (Xr ,r )dr +

∫ T
t f (Xs , s) e

−
∫ s
t V (Xr ,r )drds

}
Ex ,t denotes expectation over the process started from x at time t.
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Examples

Nonlinear: The Kardar-Parisi-Zhang (KPZ) model ∂tΦ = ∆Φ−Φ3 + ξ

Φ (t, x) = e−tet∆Φ (0, x)−
∫ t

0
e−ses∆

(
Φ3 +Φ− ξ

)
(t − s, x) ds

= E(t ,x )

{
e−tΦ (0,Xt )−

∫ t

0
e−s

(
Φ3 +Φ− ξ

)
(t − s,Xs ) ds

}

The contribution of this
sample path to the expectation
would be

−35Φ
(
0,X (7)t

)
Φ
(
0,X (8)t

)
×Φ

(
0,X (6)t

)
×ξ (t − s1 − s4,Xs1+s4)
×ξ (t − s1 − s2 − s3,Xs1+s2+s3)
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Transport models

Radial plasma transport equations

∂

∂t

(
3
2
n (r)T

)
=

1
r

∂

∂r
rn (r) χ (r ,T ,B)

∂T
∂r
+ P (r ,T )

∂

∂t
B =

∂

∂r
η (T )

(
1

µ0

1
r

∂

∂r
rB − J (r ,T )

)
T ion or the electron temperatures
n (r) ion or electron densities
χi (r ,T ) thermal diffusivity
B poloidal magnetic field
η (T ) the neoclassical resistivity,
P (r ,T ) the joint effect of heating and equipartition power
J (r ,T ) the sum of bootstrap and the RF driven currents.
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Transport models

Whenever the dependence on the temperature and magnetic field profiles
may be coded on the r− dependence, χ (r ,T ,B) = χef (r) ;
η (T ) = ηef (r); P (r ,T ) = Pef (r); J (r ,T ) = Jef (r) an exact
stochastic solution may be written, which provides an useful tool towards
the control and establishment of ITB’s.
Rewrite the equations

∂T
∂t

=
2
3

χef (r)
∂2T
∂r2

+KT (r)
∂T
∂r
+
2
3
Pef (r)
n (r)

∂B
∂t

=
ηef (r)

µ0

∂2B
∂r2

+
1

µ0

(
ηef (r)
r

+
dηeff (r)
dr

)
∂B
∂r

+
1

µ0

∂

∂r

(
ηef (r)
r

)
B − ∂

∂r
(ηef (r) Jef (r))

with

KT (r) =
2
3

(
χef (r)

∂

∂r
log (rn (r)) +

∂

∂r
χef (r)

)
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Stochastic processes and stochastic solutions

dX (t) = KT (r) dr +

√
4χef (r)
3

dW1 (t)

T (r , t)=Er ,0

{
T (Xτ, 0) + 2

3

∫ τ
t
Pef (Xs )
n(Xs )

ds
}

τ is either τ = t or the first time that Xτ = 0 or Xτ = the minor radius

dY (t) =
1

µ0

(
ηef (r)
r

+
dηeff (r)
dr

)
dr +

√
2ηef
µ0

dW2 (t)

B (r , t)=Er ,0

 B (Yτ, 0) e
∫ τ
0

1
µ0

∂
∂r

(
ηef (Y (s))
Y (s)

)
ds

−
∫ τ
0
d (ηef (Xs )Jef (Xs ))

dr e
∫ τ
s

1
µ0

∂
∂r

(
ηef (Y (v ))
Y (v )

)
dv
ds


τ is the same as above.
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An inverse problem

Find of the injection power Pef (r) to evolve in time T from an initial
profile ΦI (r) to a final profile ΦF (r). For the temperature profile

ΦF (r) = Er ,0

{
ΦI (Xτ) +

2
3

∫ τ

0
Γ (Xs ) ds

}
with Γ (Xs ) =

Pef (Xs )
n(Xs )

, the aim being to obtain Γ (r).
Numerically the problem is reduced to an algebraic equations system.
Discretize T = K∆t, the space between r = 0 and r = a (the minor
radius) in M intervals and use N paths of the process (denoted αi )

M

∑
j=1

Γ (j)
αN

∑
αi=1

(
#X (αi ) ∈ j

)
=
3N
2∆t

(
ΦF (i)−

1
N

αN

∑
αi=1

ΦI

(
X (αi )τ

))
where Γ (j) is the value of Γ in the interval j and #X (αi ) ∈ j is the
number of discrete times that the path αi falls in the interval j . This
is a linear system of M equations from which one obtains Γ (j)
j = 1, · · · ,M.
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An inverse problem

Let χ =const., n =const., ρ = r
a and s =

2χ
3a2 t
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Figure: Initial and final
temperature profiles
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Γ (Xs ) =

Pef (Xs )
n(Xs )
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Establishment of an internal transport barrier

χ (ρ) =
2

1+ e−β(ρ−0.5) ; P (ρ) = γ
(
1− 4 (ρ− 0.5)2

)
with n = const. consider the evolution up to T from an initial to a final
temperature profile
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